ISABELLA: Improving Structures of Attribute-Based Encryption Leveraging Linear Algebra

Abstract

Attribute-based encryption (ABE) is a powerful primitive that has found applications in important real-world settings requiring access control. Compared to traditional public-key encryption, ABE has established itself as a considerably more complex primitive that is additionally less efficient to implement. It is therefore paramount that the we can simplify the design of ABE schemes that are efficient, provide strong security guarantees, minimize the complexity in their descriptions and support all practical features that are desirable for common real-world settings. One of such practical features that is currently still difficult to achieve is multi-authority support. Motivated by NIST’s ongoing standardization efforts around multi-authority schemes, we put a specific focus on simplifying the support of multiple authorities in the design of schemes. To this end, we present ISABELLA, a framework for constructing pairing-based ABE with advanced functionalities under strong security guarantees. At a high level, our approach builds on various works that systematically and generically construct ABE schemes by reducing the effort of proving security to a simpler yet powerful “core” called pair encodings. To support the amount of adaptivity required by multi-authority ABE, we devise a new approach to designing schemes from pair encodings, while still being able to benefit from the advantages that pair encodings provide. As a direct result of our framework, we obtain various improvements for existing (multi-authority) schemes as well as new schemes.

Publication
ACM CCS 2024
Doreen Riepel
Doreen Riepel
Tenure-Track Faculty