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Chapter 1

Introduction

Secure communication has become one of the most important goals of modern society.
The use of digital communication media has seen an immense increase: instant messaging,
online meetings and video calls have gained in importance, in personal life as well as
in industry. Every day, we send and receive large amounts of data over the internet.
These data streams are usually protected by encryption. More specifically, we use
symmetric encryption algorithms where the same (secret) key is used for encryption
and decryption. For this reason, symmetric encryption belongs to the broader field
of secret-key cryptography. However, encrypting transmitted data is only one part to
achieve secure communication.

Let us consider a setting with two parties, Alice and Bob. Before sending encrypted
data, they need to choose and agree upon the key they want to use for encryption.
Therefore, we also need to study mechanisms how this can be done in a secure way. In
1976, Diffie and Hellman proposed the first formal public-key key exchange scheme to
solve this problem [DH76]. In such a scheme, both Alice and Bob hold their own secret
value, their secret key, and publish some information related to that secret, a public
key. Now Alice can use Bob’s public key and her own secret key to compute a shared
secret. Bob can do the same with Alice’s public key and will be able to compute the
same shared secret. This seminal paper initiated the study of asymmetric or public-key
cryptography. Their scheme, today known as the Diffie-Hellman key exchange, is the
basis for many cryptographic algorithms and protocols that have become an integral,
though mostly invisible, part of our digital life.

In the above example, we are still missing an important piece. How does Alice know
whether she is really using Bob’s public key or possibly that of an adversarial third
party? Therefore, authentication mechanisms have been proposed. Shortly after the
work of Diffie and Hellman, the concept of digital signatures was formally defined by
Rivest, Shamir and Adleman [RSA78]. They showed how to build signatures as well as
public-key encryption based on the hardness of factoring large integers. Their work laid
the foundation for the RSA cryptosystem which is named after the inventors and is yet
another important building block of today’s cryptography.

Authenticated Key Exchange. Authenticated key exchange (AKE) protocols com-
bine the above ideas of exchanging a cryptographic key with additional authentication
guarantees. Due to its high practical relevance, AKE can be considered one of the most

9



Tightly-Secure Authenticated Key Exchange

fundamental and important cryptographic primitives. In such a protocol, parties hold
long-term public and secret keys which are used for authentication. When running the
protocol, the involved parties interactively authenticate each other using their long-term
keys, but also exchange ephemeral secrets to derive a shared secret which we call the
session key. This shared session key can then be used to derive a symmetric key to
encrypt further data, as described in the scenario above.

The most prominent real-world example is the Transport Layer Security (TLS)
protocol [RD08, Res18]. Google reports that users of Google Chrome spend 99% of their
browsing time on websites secured with TLS.1 The TLS handshake that is responsible
to set up the shared key between client and server is an AKE protocol. It is based on
the Sign-and-MAC (SIGMA) paradigm [Kra03] which extends the plain Diffie-Hellman
key exchange by signatures and message authentication codes. A whole framework of
Diffie-Hellman key agreement protocols is provided by Noise [Per17]. The Noise token
language allows to specify a variety of handshake patterns within a set of fundamental
rules and thus it allows to capture a given scenario most accurately, e. g., whether parties
are assumed to have preliminary knowledge of long-term keys. After the handshake,
payload can be encrypted with the shared key using a symmetric cipher. Noise is also
the basis for the Virtual Private Network (VPN) protocol WireGuard [Don17].

While the above applications use AKE in the most fundamental way, use cases can
be found in various other settings. The Extended Triple Diffie-Hellman (X3DH) key
agreement protocol [MP16] is widely used in messaging applications such as the Signal
Messenger or WhatsApp. The main difference to the previous protocols is that it is
designed to work in a scenario where the intended communication partner is offline. A
server will therefore store not only messages but also ephemeral public keys which are
used for the key exchange. The Messaging Layer Security (MLS) protocol [BBR+22]
aims to provide secure messaging for groups of more than two parties. It allows multiple
parties to jointly derive a shared session key. Moreover, it is designed to serve for
continuous group key agreement, where group membership will change over time and
new keys have to be derived.

Instead of using public keys for authentication, an alternative approach is to use
pre-shared passwords. We call AKE protocols of this type password-authenticated key
exchange (PAKE) protocols. This concept was first introduced by Bellovin and Merritt
in 1992 [BM92]. While at first glance, it seems to capture real-world scenarios quite
accurately, it is not nearly as widely used as traditional AKE. One reason for this
may also be the lack of (secure) standardized protocols. Almost all protocols that were
standardized by the Institute of Electrical and Electronics Engineers (IEEE) in 2009
[IEE09] turned out to have serious security issues. However, with recent standardization
efforts by the Crypto Forum Research Group (CFRG), the adoption of PAKE protocols
may see an increase in the future. The CFRG is a working group inside the Internet
Research Task Force (IRTF). In 2020, they selected two protocols for standardization:
CPace [HL19] and OPAQUE [JKX18], both of which have been thoroughly analyzed
with formal security proofs.

1 https://transparencyreport.google.com/https/overview
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Provable Security and Tightness. Assessing the exact security of cryptographic
primitives is a non-trivial task. In [GM82], Goldwasser and Micali formalize security for
public-key encryption schemes and provide a methodological approach to analyze and
prove the security of cryptographic schemes based on hardness assumptions. For this,
we first need to define what security for a particular type of scheme, e. g., a public-key
encryption scheme, means. We capture this in a security game between a challenger
and an adversary A. The challenger simulates the execution of a cryptographic scheme
and A can interact with it via oracles. In the game, A has to solve some challenge
which models the security of the scheme, e. g., distinguishing which of two messages
was encrypted. Solving the challenge then translates to breaking the cryptosystem.

Once the security game is defined, we can prove security of a specific instantiation of
the cryptographic scheme. This is done by describing a security reduction. In particular,
we use the adversary A that breaks the cryptographic scheme to construct another
adversary B that solves some computationally hard problem. The security follows from
contradiction. If the problem that B solves is assumed to be hard, then such an adversary
A cannot exist and the scheme must be secure.

We are also interested in quantifying the relation between A and B. Therefore, if A
runs in time tA and has advantage εA in breaking the scheme, then we can express the
advantage of B in solving the underlying problem as εB = εA/L for some L. We call
L the loss of the security reduction. If B’s running time tB is about that of A and L
is constant, then the reduction is considered tight. In particular, L should not depend
on the number of oracle queries made by A. Based on this analysis, we can now make
statements about the concrete security which is usually stated in bits. In particular, if
we have εA/tA ≤ LεB/tB ≤ 2−λ, then the scheme offers λ bits of security.

The concrete security of a cryptographic scheme becomes important when choosing
system parameters, e. g., the size of an RSA modulus or an elliptic curve group. The
computation above illustrates the effect of the loss L on the concrete security: While a
security proof usually attests security for polynomial-time adversaries, fixing system
parameters may render such asymptotic security guarantees meaningless. In particular,
a huge security loss implies that one should choose larger parameters in order to achieve
the desired security level. Thus, a tight proof is always preferred over a non-tight proof
and indeed, tightness has been considered for various cryptographic primitives, e. g., for
digital signatures [BR96, Ber08, Sch11], public-key encryption [BBM00, HJ12, LJYP14]
and variants like identity-based encryption [BR09, CW13, BKP14]. Depending on the
cryptographic primitive, the tightness loss can manifest in several dimensions, e. g., the
number of users in the system, the number of (challenge) ciphertexts the adversary
obtains or the number of hash function evaluations. In some cases, it is even impossible
to give a tight security proof. For example, Coron [Cor02] shows that security proofs
for several signature schemes [BR96, GHR99, Pai99] are optimal in the sense that their
security loss is unavoidable. These results were revisited and generalized to other classes
of cryptographic primitives or specific schemes (e. g., [KK12, HJK12, LW14, BJLS16]).

Real-World Consequences of Tightness Gaps. When it comes to choosing sys-
tem parameters for a scheme, practitioners often ignore the non-tightness of proofs
since increasing the parameters comes with a significant efficiency penalty. Depending
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on the application and cryptographic primitive in question, even a tight proof does not
necessarily capture what we find in practice. This is due to the fact that many schemes
are analyzed in a single-user and single-challenge setting. However, they are then used
in systems with multiple users. Although the two settings are asymptotically equivalent
in most cases (e. g., for public-key encryption schemes [BBM00]), exact security should
be a concern, as the following examples demonstrate.

In the context of message authentication code (MAC) schemes, key collision attacks
have shown to actually reduce the security by the number of keys [Bih02, CMS12],
thus providing evidence that the tightness loss indeed plays a role for choosing system
parameters. Furthermore, when combining a key encapsulation mechanism (KEM) with
a data encapsulation mechanism (DEM) to obtain a hybrid public-key encryption scheme,
it turns out that an attack against the multi-user security of the DEM tightly translates
to an attack against the multi-user security of the hybrid scheme [Zav12, GKP18]. Since
deterministic DEMs are subject to key collision attacks, similar to MACs, the combined
scheme is only as secure as the weakest component and thus the actual security is also
affected by the tightness gap.

Lattice-based cryptography has attracted a lot of interest over the past decades
and also plays an important role in the post-quantum competition by the National
Institute of Standards and Technology (NIST) that aims at standardizing public-
key encryption and digital signatures. While a huge benefit of building public-key
cryptography based on lattice problems is the existence of worst-case to average-case
reductions for those problems (e. g., [Ajt96, Reg05]), the bounds are mainly asymptotic.
For concrete parameters, this may incur a huge and sometimes exponential tightness loss,
as pointed out in [CKMS16, KM19, KSSS22]. Considering that determining parameter
sets for lattice-based schemes is a non-trivial task in itself, this makes it very hard to
give good estimations on the exact security.

Modeling Security of AKE. Whereas for standard public-key encryption and
signatures, the single-user setting is the most widely accepted security setting, all
security models for AKE protocols consider an execution environment with multiple
parties, mirroring their real-world application scenario. We want to formalize the security
in terms of a game. Due to the interactivity, the security game needs to reflect strong
adversarial capabilities. We want the adversary to be able to initiate multiple sessions
between any pair of parties. It may read, send, modify or delete messages that are
exchanged between the parties. With this, we model security against active adversaries,
motivated by practical attacks, e. g., the Bleichenbacher attack [Ble98] against an old
version of TLS where the padding of the used RSA encryption standard provides a
decryption oracle to the adversary.

Another concern is that an adversary might be able to obtain secret information,
e. g., if secret keys of parties get lost or stolen or if an adversary gets access to their
devices. Thus, we allow the adversary to adaptively corrupt users or reveal session
keys. So far, we have only described the capabilities of the adversary, but not what we
consider a break of an AKE protocol. In game-based security notions such as [BR93a,
BPR00, CK01, Kra05, LLM07], we define security based on key indistinguishability,
i. e., the adversary’s challenge is to distinguish a real non-revealed session key from
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a uniformly random one. The session can be chosen adaptively, but trivial winning
conditions have to be defined based on exposures. This challenge models an important
cryptographic principle, namely that session keys of different sessions should indeed be
independent of each other.

While this thesis focuses on security of AKE in the traditional and most fundamental
sense, several other properties and security goals of AKE protocols have been analyzed.
For example, privacy-preserving AKE [SSL20, RSW21, LLHG22] aims to hide the
identities of involved parties. In some practical settings, it may also be desirable that
only one party authenticates to the other. Thus, other security goals like one-way
authentication and anonymity [GSU12, IY22] were considered, but also deniability
[UG15] and leakage-resilience [ASB14, CMY+16].

AKE and Tightness. Due to the complexity of security models, security proofs of
AKE protocols can be quite involved. Thus, a common proof technique in AKE is to
let the reduction first guess the session for which the adversary will ask the challenge.
Depending on the exact guessing strategy, this introduces a security loss that is at least
linear in the total number of sessions. To estimate the security loss of this reduction,
consider Google Chrome as an example. In 2021, 3.2 billion users had Google Chrome as
their primary browser.2 If each of these users establishes only one session secured over
TLS, this makes already more than 231 sessions. Thus, the security loss can be immense
and suggests not to use standard system parameters. Instead, we should adapt the
protocol’s system parameters accordingly. Although we are not aware of generic attacks
against AKE protocols as those mentioned above, we should aim for a tight proof in the
first place to avoid unpleasant surprises. For this reason, there has been a lot of interest
and effort in revisiting security proofs of protocols that are used in practice. In many
cases, a more involved proof strategy can actually lead to a tight(er) security proof.
Prominent examples are the security proof of TLS and SIGMA [DJ21, DG21, DDGJ22]
as well as the signed Diffie-Hellman protocol [GJ18, PQR21]. We continue this line of
research by analyzing the concrete security of well-established Diffie-Hellman based
protocols. Whereas the HMQV protocol [Kra05] and several variants have received
extensive security analyses, their concrete security has not been analyzed before. Apart
from HMQV, we study the concrete security of the NAXOS protocol [LLM07] for which
no tight proof is known. More details are provided in Section 1.3.1 and Appendix A.

Another direction of research is to consider tightness already when designing key
exchange protocols. In particular, when constructing AKE from other cryptographic
building blocks, it can be useful to extract the exact security definition for those
building blocks which will lead to a tight security proof. The next step would be to
find tightly-secure instantiations for each building block. This was done for example in
[BHJ+15] and we follow a similar approach for different generic constructions of AKE
(cf. Sections 1.3.2 and 1.3.3 and Appendices B and C).

When instantiating protocols or analyzing their security, one might encounter
impossibility results. As described above for signatures, it turns out that specific
types of protocols cannot be proven secure without a tightness loss. Cohn-Gordon et
2 https://www.statista.com/statistics/543218/worldwide-internet-users-by-brows

er/
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al. [CCG+19] show that as long as long-term public keys are uniquely determined by
the corresponding secret key, we run into a commitment problem and cannot do better
than losing a factor linear in the number of users.

Post-Quantum Secure AKE. Concrete instantiations of AKE protocols that come
with a tight security proof mostly rely on the hardness of different variants of the
Diffie-Hellman problem in prime-order groups. These problems allow for efficient re-
randomization: we can take one problem instance and randomize it in such a way
that we get another or multiple random problem instances. If an adversary solves one
of them, we can then extract the solution for the initial problem instance. This is
particularly useful when considering security in the multi-user multi-challenge setting.
However, all of these Diffie-Hellman based protocols are not post-quantum secure since
quantum computers can break the underlying hardness assumption in polynomial time
using Shor’s algorithm [Sho94]. Thus, the need has grown to design and standardize
post-quantum secure cryptography that withstands attacks of quantum computers. In
2022, NIST announced the winners of the post-quantum competition. Three of the four
selected schemes are based on computational hardness assumptions for lattices. While
we know how to build AKE from public-key encryption and signatures generically, we
do not know of any tightly-secure lattice-based construction of AKE.

A hopeful candidate for post-quantum security with similar properties as the original
Diffie-Hellman key exchange lies in isogeny-based cryptography. While only shortly
after the announcement of the winners of the NIST competition, one of the alternate
candidates based on the Supersingular Isogeny Diffie-Hellman (SIDH) key exchange
[JD11] was completely broken [CD22, MM22, Rob22], the Commutative Supersingular
Isogeny Diffie-Hellman (CSIDH) protocol [CLM+18] is not affected by these attacks.
CSIDH builds upon a group action which, compared to standard (e. g., elliptic-curve)
groups, offers limited structure. On the one hand, this prevents polynomial-time quantum
attacks as captured by Shor’s algorithm. Instead, the best known quantum attack is
subexponential [Kup05]. On the other hand, this limited structure prevents from simply
transferring most of the existing protocols to the CSIDH setting.

One exception is the AKE protocol by [CCG+19] which has been analyzed for
CSIDH in two independent works [dKGV20, KTAT20]. However, the analysis inherits
the (optimal) tightness loss that is linear in the number of users due to the uniqueness
of long-term keys. While the limited structure of the group action gives little hope
to instantiate the generic constructions of tight AKE protocols, we show how to
construct the first tightly-secure PAKE protocol from group actions (cf. Section 1.3.4
and Appendix D).

Overview of this Thesis. In the following section, we will provide necessary prelim-
inaries and a more thorough look at tightness in general. We will then give an overview
on the syntax, security and constructions of AKE protocols in Section 1.2. We will
also cover the special case of password-authenticated key exchange and prior work on
tightly-secure AKE. The main results of the thesis are summarized in Section 1.3 and
full versions of the respective papers are given in Appendices A to D. In Chapter 2, we
discuss these results and provide an outlook on future work and open questions.
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1.1 Preliminaries
In this section, we introduce the necessary preliminaries to understand the contributions
of this thesis. The AKE protocols considered or instantiations thereof are mostly based
on prime-order groups and group actions. More details are given below in Section 1.1.1.
In our generic constructions of AKE, we rely on key encapsulation mechanisms, hash
proof systems and digital signatures, which are introduced in Section 1.1.2. Some proofs
are carried out in idealized models which are discussed in Section 1.1.3. We further give
an overview on tightness in Section 1.1.4.

1.1.1 Groups and Group Actions
Elliptic-Curve Cryptography and Prime-Order Groups. Most of today’s public-
key cryptography is based on elliptic curves over finite fields. For cryptographic appli-
cations, we are interested in a group of points on the elliptic curve which is abelian
and cyclic. In the following, we will also assume that these groups are of prime order
p, as is the case for curves P-256, P-384 and P-521 [Nat13] standardized by NIST.
Other curves used in practice, such as Curve25519 and Curve448 [LHT16], are not of
prime order, but they do have similar properties (cf. [ABH+21]). We will generally
denote public parameters of a cryptographic scheme or protocol relying on prime-order
groups by (G, p, g), where G is the group of prime order p with generator g. We will use
multiplicative notation, where each element h ∈ G can be written as ga for some a ∈ Zp.
When sampling an element uniformly at random from Zp, we will write a $← Zp. We can
now define the discrete logarithm (DLOG) problem in the following way: given ga, where
a $← Zp, an adversary must compute a. Similarly, we can define the Diffie-Hellman
problem and its variants:
– The computational Diffie-Hellman (CDH) problem requires to compute gab given

(ga, gb) for random a, b $← Zp.
– The decisional Diffie-Hellman (DDH) problem requires to distinguish whether

(ga, gb, gc) is a Diffie-Hellman tuple (i. e., gc = gab) or whether it is a random tuple
(i. e., c $← Zp).

– The gap Diffie-Hellman (GapCDH) problem requires to solve CDH when given a
decision oracle DDH that on input (x, y, z) ∈ G3 will output 1 if yDLOG(x) = z and
0 otherwise. We call the problem the strong Diffie-Hellman (StCDH) problem if the
first input to the DDH oracle is fixed.

A useful property of these problems is their random self-reducibility which we will
discuss in the context of tightness in Section 1.1.4.

Isogeny-based Cryptography and Group Actions. Since quantum algorithms
can easily break traditional elliptic-curve cryptography [Sho94], alternative candidates
have been proposed, e. g., isogeny-based cryptography. In general, an isogeny is a map
between two elliptic curves. The two most prominent examples on how to use these
maps to construct a Diffie-Hellman key exchange is given by the Supersingular Isogeny
Diffie-Hellman (SIDH) protocol introduced by Jao and De Feo in 2011 [JD11] and the
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Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) protocol introduced by
Castryck et al. in 2018 [CLM+18]. The basic idea of the key exchange is that both
parties choose a random path in a (specified) graph of elliptic curves, starting from
a fixed known curve, and then use the resulting curve as public key while the path
(represented by isogenies) remains secret. The shared secret can be obtained by taking
the same path starting from the other party’s public key. In general, it is not clear what
it means to repeat a path: In SIDH, this is solved by providing auxiliary information
to the other party, while in CSIDH, this is solved by restricting to a smaller set of
elliptic curves. Being a promising candidate for post-quantum secure key exchange,
recent works [CD22, MM22, Rob22] show that the SIDH protocol is completely broken
by classical computers. This is due to the auxiliary information about points on the
respective elliptic curves that is used to obtain the same shared key. This auxiliary
information has been subject to various attacks before (e. g., [GPST16, Pet17]), but a
non-trivial application of Kani’s theorem [Kan97] then led to an efficient key recovery
attack. The CSIDH protocol does not need the auxiliary information and is thus not
affected by this attack. We can describe the underlying structure by a commutative
group action.

A group action is a map ? : G × X → X , where G is a group and X is a set. Then,
for any group elements g, h ∈ G and set element x, it holds that g ? (h?x) = (gh) ?x. In
the case of CSIDH, G is additionally abelian. The idea of constructing a key exchange
protocol based on the group action on the set of ordinary elliptic curves was already
observed by Couveignes [Cou06] and independently by Rostovtsev and Stolbunov [RS06].
However, CSIDH is the first practical instantiation that, in contrast to previous work,
uses the group action on the set of supersingular elliptic curves (cf. [CLM+18]). Further,
CSIDH is believed to be post-quantum secure. The best known quantum attack is
subexponential and uses Kuperberg’s algorithm [Kup05] to solve the underlying dihedral
hidden subgroup problem. To accurately model CSIDH as a group action, we mainly
follow the framework of (restricted) effective group actions as formalized by Alamati et
al. in [ADMP20]. Thus, we will denote an effective group action by the tuple (G,X , ?, x̃),
where x̃ ∈ X additionally describes some fixed public set element. We can translate
computational hardness assumptions like CDH and DDH from the prime-order group
setting to group actions which we will label with the prefix GA, e. g., GA-CDH.

1.1.2 Cryptographic Building Blocks
We will use key encapsulation mechanisms, hash proof systems and digital signature
schemes to generically construct AKE protocols. In the following, we will introduce the
syntax and standard security notions.

Key Encapsulation Mechanisms. A key encapsulation mechanism (KEM) is a
cryptographic primitive which allows a sender, knowing the public key of the receiver, to
encapsulate a key in a ciphertext. The receiver can then recover the key with their secret
key. More formally, a KEM consists of three algorithms GenKEM, Encaps and Decaps,
where GenKEM outputs a key pair (pk, sk) of public key and secret key, Encaps takes as
input the public key pk and outputs a tuple (c,K) of ciphertext c and encapsulated key
K, and Decaps takes as input the secret key sk and c and outputs a key K.
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The security game for indistinguishability under chosen-plaintext attacks (referred
to as IND-CPA security) provides the adversary with a challenge (c∗,K∗), where K∗ is
either the real key output by Encaps or a key drawn uniformly at random from the key
space. The adversary’s goal is to distinguish which is the case. The security game for
indistinguishability under chosen-ciphertext attacks (referred to as IND-CCA security)
additionally provides a decapsulation oracle to the adversary such that it will receive
decapsulated keys for ciphertexts of its choice (excluding the challenge ciphertext).

Hash Proof Systems. The notion of smooth projective hashing was initially defined
by Cramer and Shoup [CS02]. Let SK and PK be sets. Further, let C, K be sets, V ⊂ C
a language and Λsk : C → K a hash function indexed by sk ∈ SK. We say that Λsk
is projective if there exists a projection µ : SK → PK such that µ(sk) ∈ PK defines
the action of Λsk over V. That is, for every c ∈ V, µ(sk) and c uniquely determine
K = Λsk(c). We do not have any guarantees for elements in C \ V . In particular, it may
not be possible to compute Λsk(c) from µ(sk) and c ∈ C \ V . A hash proof system (HPS)
can be seen as a special form of key encapsulation mechanism where PK, SK, V , K are
the sets of public keys, secret keys, ciphertexts and encapsulated keys, respectively. Key
generation draws a random sk $← SK and derives pk := µ(sk). Encapsulation draws a
ciphertext c together with a witness r of the fact that c ∈ V. Using the witness, it is
possible to compute K := Λsk(c) from pk. Decapsulation can in turn compute K using
the secret key.

We consider two main properties of hash proof systems: a subset membership problem
and universality. The subset membership problem requires to distinguish whether an
element c is drawn from V or from C \ V. The universality property makes statements
about the entropy. In particular, we say a hash proof system is perfectly universal1
if the value Λsk(c) for any ciphertext c /∈ V is uniformly random in K, even given
pk = µ(sk). This means that even a possibly unbounded adversary cannot distinguish
the distributions (pk,Λsk(c)) and (pk,K $← K), where the randomness is taken over the
random choice of sk. Further, we can also define a strengthened form of universality.
We say that a hash proof system is perfectly universal2 if for all c′ ∈ C, the value Λsk(c)
for any c /∈ V ∪ {c′} is uniformly random in K, even given pk = µ(sk) and Λsk(c′).

Digital Signature Schemes. A digital signature scheme (SIG) is a cryptographic
primitive which allows a sender to sign a message using their signing key. The resulting
signature can be verified by anyone who is in possession of the verification key. More
formally, a signature scheme consists of three algorithms GenSIG, Sign and Vrfy, where
GenSIG outputs a key pair (ssk, vk) of (secret) signing key and (public) verification key,
Sign takes as input the signing key ssk and a message m and outputs a signature σ, and
Vrfy takes as input the verification key vk, the message m and signature σ and outputs
1 if σ is a valid signature for m and 0 otherwise.

Security is captured by existential unforgeability against chosen-message attacks
(referred to as EUF-CMA security). In this game, the adversary has access to the
verification key as well as a signing oracle which outputs signatures on messages of the
adversary’s choice. The goal of the adversary is to forge a new pair of message and
signature (m∗, σ∗) for which verification succeeds and which has not been output by
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the signing oracle. In the slightly stronger notion of strong existential unforgeability
(SUF-CMA), the adversary is also allowed to provide a signature forgery for a message
that was already queried to the sign oracle, but the forged signature has to be different to
the one output by the game. We will talk about this technicality and an extended security
notion when talking about security of generic AKE constructions in Section 1.2.2.

1.1.3 Idealized Models
In the following, we will describe two abstract models of computation which are widely
used tools in provable security: the random oracle model (ROM) and the generic group
model (GGM).

The Random Oracle Model. The methodology of the ROM was first introduced
by Bellare and Rogaway [BR93b]. It is used in security proofs to idealize hash functions
as truly random functions. In particular, when proving security of a scheme in the ROM,
the game provides oracle access to the hash function and simulates its output via lazy
sampling. That is, each time the adversary (or the game itself) wants to evaluate the
hash function, a uniformly random value from the output space is chosen. The game
keeps a list of queries to remember outputs and to answer consistently whenever a value
is queried multiple times. The ROM thus provides several properties that are useful
in security proofs. The first one is that it allows the security reduction to observe the
adversary’s queries. The reduction always knows which queries have been made and
as long as a query has not been made, the output is completely independent of the
adversary’s view. Many proofs rely on the fact that the solution to the computationally
hard problem serves as input to the hash function. Thus, observing the queries made
by the adversary can be used to extract the solution to that problem. A second useful
property is programmability. As long as the output values are correctly distributed, the
reduction can embed, e. g., its own challenge, or assign specific values at a later point
in time.

The ROM has been used to prove security of many practical schemes, such as
OAEP [BR95a] or DHIES [ABR01]. It also allows for useful transformations, e. g., the
Fujisaki-Okamoto (FO) transformation [FO99] in the context of public-key encryption
or the Fiat-Shamir transformation [PS96] in the context of signature schemes. The
ROM can also be used as a tool to enable tight security proofs which we will discuss in
more detail in Section 1.1.4.

Being a very powerful heuristic, the validity of the ROM has been questioned from
the beginning. Though contrived, there exist several examples of schemes that can be
proven secure in the ROM, but are actually insecure for any practical instantiation
of the hash function [CGH98, GK03, BBP04, BFM15]. Despite these uninstantiability
results, no attack against a practical scheme has been found which makes the ROM a
well-established model to prove security for practical applications. Several variants of the
ROM have been proposed to model hash functions and an adversary’s capabilities more
accurately, e. g., the global random oracle model [CJS14, CDG+18], the augmented
random oracle model [Zha22] or the quantum random oracle model [BDF+11]. The
latter is probably the most prominent variant since it has become the standard tool to
argue about post-quantum security of schemes that use hash functions.
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The Generic Group Model. The generic group model (GGM) was formally intro-
duced by Shoup [Sho97] and later refined by Maurer [Mau05]. The GGM makes the
assumption that most attacks against cryptographic groups are generic, i. e., they only
exploit the group structure and not the actual representation of group elements. It is a
useful model to give information-theoretic lower bounds on the computation complexity
of (generic) attacks. In the GGM, an adversary gets oracle access to all group operations.
In particular, each group element is represented by a handle which the adversary can
use to perform computations. The running time of an adversary in the GGM is then
defined by the number of group operations, i. e., the number of queries to the group
operation oracle. If A is a generic adversary making at most q queries to the group
operation oracle for a group of prime order p, then the lower bound of solving DLOG
is O(q2/p). This bound matches the best known attack against DLOG in prime-order
elliptic curve groups used in practice.

Although similar uninstantiability results as for the ROM exist (e. g., [Den02]), the
GGM is a useful tool to justify the hardness of non-standard assumptions or security of
a scheme. For example, it has been used to analyze the one-more discrete logarithm
assumption [BFP21], the simultaneous Diffie-Hellman assumption [PW17] and attribute-
based encryption schemes (e. g., [BSW07]). An analysis in the GGM is also interesting
in the context of tightness. A tight bound in the GGM (i. e., one that matches the
bound stated above) supports the use of standard group sizes for schemes when a tight
bound is either unknown or impossible (e. g., [BD20]).

1.1.4 Tightness
Tightness has been considered for various cryptographic primitives, such as digital
signatures and public-key encryption. Depending on the primitive, tight security may
be relevant from different angles. When proving the security of a signature scheme, for
example, it is natural to allow the adversary a polynomial number of queries to the
signing oracle. A security bound would then be considered tight if it is independent of
the number of signing queries. For IND-CCA security of public-key encryption schemes,
the bound should be independent of the number of decryption queries. These two
examples apply to the standard single-user setting. However, extending them to the
multi-user setting requires the bound to be additionally independent of the number of
users. Similarly, for encryption schemes, we can consider tightness for many challenges
(i. e., encryption) queries.

This section aims to provide some insights into aspects of tight security in general,
whereas tightness in the context of AKE is considered in Section 1.2.4.

Random Self-Reducibility. We call a problem random self-reducible if we can
transform any instance of the problem into a random instance of the problem. This
is not only useful for tight security proofs, but it also means that for fixed public
parameters either (almost) all instances of the problem are hard or no instance.

Computationally hard problems over prime-order groups such as DLOG, CDH and
DDH allow for a random self-reduction. By a re-randomization argument, we can thus
show a tight reduction from a single-instance version of the problem to a multi-instance
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version. This observation can be used in a security proof to actually embed multiple
problem instances at the same time. Similarly, we can randomize instances of group
action assumptions such as GA-DLOG and GA-CDH. Unfortunately, the limited structure
of the group action prevents a random self-reduction for GA-DDH (cf. [KTAT20]).

Prior Work on Tight Security. In [BBM00], Bellare, Boldyreva and Micali give
reductions for the multi-user and multi-challenge security of public-key encryption
schemes showing the asymptotic equivalence to the standard (single-user single-challenge)
security notion. However, the non-trivial direction of their proof uses a hybrid argument
resulting in a loss that depends on the number of users and challenges. They also show
that we can get a tight bound for specific schemes like the ElGamal encryption scheme
[ElG84] and the Cramer-Shoup encryption scheme [CS98]. Both reductions use the
random self-reducibility property of the DDH problem as described above. Tightly-secure
public key encryption has been considered in several other works, e. g., [HJ12, LJYP14,
GHKW16, GHK17, HLLG19], as well as in the identity-based setting [BR09, CW13,
BKP14, LP20a, LP20b]. Some primitives seem particularly hard to construct, like
tightly-secure non-interactive key exchange (NIKE) with adaptive security [FHKP13,
HHK18, HHKL21]. One reason for this is that strong security models for NIKE (as
those for AKE) consider adaptive corruptions of parties and are often subject to
impossibility results. While tightly-secure signatures were considered in several works
(e. g., [BR96, Ber08, Sch11]), we need an even stronger notion of security for signature
schemes if we want to use them to construct tightly-secure AKE. We discuss the arising
difficulties and constructions in more detail in Section 1.2.4.

In this thesis, we look at tightness by considering the success/time ratio as described
earlier in the introduction. However, there also exist variants of the tightness definition
that take into account the amount of memory. The study of memory-tight reductions
was initiated by Auerbach et al. [ACFK17] and was used to analyze various primitives
and schemes [Bha20, GJT20, GT20, DGJL21a] as well as to give lower bounds on the
memory consumption of reductions [ACFK17, WMHT18].

Tightness in the ROM. It is important to note that impossibility results often
do not apply in general but only to specific types of reductions or schemes. Whereas
[BJLS16] show that unique signature schemes have an inherent tightness loss that is
linear in the number of signing queries, Guo et al. [GCS+17] construct a scheme in
the ROM that circumvents this tightness loss. In particular, they solve the underlying
problem by extracting the solution from the hash queries. Their result does not contradict
the impossibility result of [BJLS16], but rather illustrates its limitations.

In non-committing encryption, we assume the existence of a simulator that is able
to generate fake ciphertexts which can later be opened to any message. As pointed out
by Nielsen [Nie01, Nie02], such a non-committing encryption scheme can be efficiently
constructed from any trapdoor permutation in the ROM. However, he also shows that
we cannot hope to transfer those schemes to the standard model. The ROM allows to
first create a random ciphertext and later, on corruption, the reduction can produce a
valid explanation of the ciphertext by reprogramming the random oracle accordingly.
For this reason, the random oracle provides a way to resolve the so-called commitment
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problem that often arises in the context of tight security. We will further elaborate on
this in Section 1.2.4.

Exploiting Tightness Gaps. The fact that a tight proof does not exist (or is even
impossible) does not mean that there is indeed an actual practical attack. However,
there are examples where attacks have shown to indeed exploit the tightness gap.

Chatterjee, Menezes and Sarkar [CMS12] show that the tightness gap of a MAC
scheme in the multi-user setting, where keys and tags are of equal length, can lead
to an attack against the scheme which is much better than exhaustive search. In this
attack, the MAC scheme is modeled as an ideal MAC, i. e., it produces random outputs,
and thus works generically for any MAC scheme. The attacker first asks for a tag of
the same message for all users, then it tries to find a collision by computing the tag
for this message with a subset of keys. A collision can either be caused due to a key
collision or due to a tag collision. Since we assume both to be of equal length, it is a
key collision with probability 1/2. Thus, considering n keys with bit length r, a key
collision happens with probability 2r/n. With this, we are not only able to produce a
forgery, but it is also a complete key recovery attack.

Since operations of public-key encryption schemes are rather expensive compared
to symmetric encryption schemes, those two primitives are in practice combined as
hybrid encryption. The resulting public-key encryption scheme first encapsulates a key
using a KEM and then uses this key to encrypt the message using a data encapsulation
mechanism (DEM). Similar to the above key collision attacks, [Zav12, GKP18] show
that deterministic DEMs also allow for (passive) attacks that allow to distinguish
encryptions or even recover secret keys, making use of the number of keys. They also
show that in order to get a tightly-secure hybrid public-key encryption scheme, all
components must be tightly secure. In particular, any attack against the DEM (or
an intermediate key derivation function) tightly implies an attack against the hybrid
scheme.

1.2 Authenticated Key Exchange
This section aims at providing the background to understand the formal goals and
guarantees of AKE. For this, we will first introduce some terminology and how security is
modeled. We then describe how to generically construct AKE protocols from public-key
primitives. Finally, we will discuss tightness in the context of AKE and prior work on
tightly-secure AKE.

Terminology. An AKE protocol is executed between two parties where each party is
in possession of a long-term key pair. One particular instance of an execution is called
a session. The intended communication partner is called the peer of a session. Further,
we will refer to the party which sends the first message of a session as the initiator and
to the one that receives this message and continues the interaction as the responder.
A protocol execution can consist of multiple rounds, where message that can be sent
independently are counted as a single round. At the end of the session, both parties
will output a shared session key. Between rounds, both parties may have to store some
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intermediate session-specific values which can be public or secret. We will denote these
values as the state of a session.

Correctness of an AKE protocol means that two honest parties compute the same
session key when each party has received all messages sent by the peer of the session.

Instead of computing the session key, a session may also terminate early and
output a special failure symbol ⊥, e. g., when one of the parties detects an active
attack. Based on this, we can broadly define two classes of AKE protocols, those with
implicit authentication and those with explicit authentication. In explicitly authenticated
protocols, the key exchange will fail and the session will terminate with ⊥ if the involved
parties do not authenticate each other successfully. In contrast to that, an implicitly
authenticated protocol will only ensure that both parties agree on the same session key
if they execute the protocol honestly and no active attack happens. In case of an active
attack, we want to ensure that session keys are different (or rather independent) which
can then be detected once the key is used in further communication.

1.2.1 Security

In this thesis, we focus on game-based security models for AKE which are based on
key indistinguishability. Since the introduction of the first formal model by Bellare
and Rogaway [BR93a], several security models have been proposed to capture different
properties or to address shortcomings of previous models (e. g., [BR95b, BPR00, CK01,
Kra05, LLM07]). We now recall the most important definitions, extensions and variants
used in the literature. We provide a more general discussion on the variety of different
models and the implications for tight security in Section 2.1.

Execution Environment. The AKE security experiment is described as a game
between a challenger and an adversary A. There are N parties P1, . . . ,PN , where each
party Pi holds a pair of long-term keys (lpki, lski) and can interact in S sessions denoted
by π1

i , . . . , π
S
i . At the beginning, A receives all long-term public keys (lpk1, . . . , lpkN ).

Then we give A full control over the network by providing the following oracles:
– Oracle Send is used to either initiate a new session or send messages to a previously
initiated session. For this, the oracle takes as input a tuple (i, s) indicating the
session πsi and a protocol message. During the execution, the session πsi stores
session-specific variables, e. g., the intended communication partner as well as sent
and received messages. The Send oracle allows A to send messages on behalf of
other parties. In particular, A can decide to forward or replay messages, modify
them in transit or also drop messages. Once the session key has been computed or
the execution has stopped with the failure symbol, no more messages can be sent to
the session πsi .

– Oracle Reveal takes as input a tuple (i, s) indicating the session πsi and outputs
the session key K of that session if it exists.

– Oracle Corrupt takes as input an index i indicating party Pi and outputs the
party’s long-term secret key lski.
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– Oracle Test takes as input a tuple (i, s) indicating the session πsi and outputs a
challenge key which is determined by a random challenge bit b. If b = 0, A receives
the session key of πsi . Otherwise, it receives a uniformly random key from the session
key space. In the following, we denote the session subject to this query the test
session.

All oracles can be queried adaptively. The adversary’s goal is to guess the challenge bit.
The fact that the adversary is allowed to reveal session keys of sessions other than the
test session implies that session keys should in general be independent of each other.
However, we need to specify in which cases a sequence of queries allows to trivially
determine the challenge bit, e. g., the session key of the test session must not be revealed.
Due to the complexity of the security game, restricting the adversary in order to prevent
trivial wins is crucial and not always straightforward. Generally, we call a session fresh
if it qualifies for a test session, i. e., it does not allow trivial wins. Before we are able to
define freshness criteria, we need to introduce the concept of partnering.

Partnering. Whenever the adversary only forwards messages between two sessions
πsi and πtj belonging to parties Pi and Pj , they will compute the same session key
(by correctness). If one of the two sessions is the test session, we need to restrict the
adversary from revealing the session key of the other session. For this, we need to
formally define when a session is partnered to another session. The commonly used
approaches to defining partnering are either based on matching conversations [BR93a]
or on original keys [LS17].

The concept of matching conversations was already introduced in the first formal
model for AKE [BR93a]. Partnering based on matching conversations is pretty simple:
one session is partnered to another if they received those messages that were sent by the
other one. However, the party sending the last message will never know if the intended
partner also receives this message. Thus, the last message needs to be ignored when
determining whether two sessions are partnered.

However, Li and Schäge [LS17] noticed that this sometimes puts unnecessary strong
assumptions on protocols. They identify a class of “no-match” attacks. For example,
if an adversary manages to randomize a signature, then sessions are not partnered in
the sense of matching conversations. Thus, signatures need to be either deterministic
or satisfy the stronger notion of SUF-CMA (cf. Section 1.1.2). To address this, they
introduce the notion of original-key partnering. More specifically, the original key is
the session key computed by the involved parties under a passive adversary and we say
that two sessions are partnered if they both compute the original key.

Forward Security. The notion of perfect forward secrecy was originally used by
Günther [Gün90] in the context of identity-based key exchange. It refers to the property
that already established session keys are still secure, i. e., indistinguishable from a random
session key, even if the long-term secret keys of the involved parties are leaked afterwards.
Later, the relaxation of weak perfect forward secrecy was introduced in [Kra05]. In
the following, we will denote the two properties by forward security and weak forward
security, respectively. Whereas forward security guarantees key indistinguishability
for all previous sessions, including those where an adversary may have been actively
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interfering, weak forward security only provides guarantees for those sessions where the
adversary was passive.

In the AKE security model, we capture (weak) forward security by allowing the
adversary to corrupt long-term secret keys via oracle Corrupt and by defining freshness
accordingly. For forward security, a session is fresh if at the time the session key was
computed, none of the involved parties was corrupted. For weak forward security, a
session is fresh if there additionally exists a partnered session. In general, implicitly
authenticated AKE protocols can only achieve weak forward security [Kra05, BG11,
Sch15].

Key-Compromise Impersonation Attacks. An additional property we want to
model is security against key-compromise impersonation (KCI) attacks. Even if a
party is corrupted, it should not be possible for an adversary to impersonate another
(uncorrupted) party towards the corrupted party. It may be possible that a user does
not know that their secret key was compromised, so resilience against KCI attacks can
maintain at least some security guarantees for the corrupted party.

Protection against KCI attacks is captured by all common security models by
allowing the adversary to first corrupt a party and then issue a test query against a
session of this party.

Protecting against State Reveals. In some security definitions (e. g., [Kra05,
LLM07]), the adversary is also allowed to reveal the secret state of a session. This is
usually done via an additional oracle:
– Oracle RevealState outputs the secret state of the specified session.

The definition of the exact output of this oracle highly depends on the security model.
There exist different flavors of definitions: the state could be the randomness that was
used by the session to compute the message or it could also be all secret information
related to a session. This makes the definition of trivial wins even more complex. Further,
there exist generic constructions which are not secure when revealing ephemeral secrets,
but applying simple techniques then allows to prove security. The most prominent
example is probably the “NAXOS hashing trick” [LLM07]. The NAXOS protocol is
a Diffie-Hellman based AKE, where the ephemeral public key (or rather the secret
exponent) is derived by hashing an ephemeral secret string together with the long-term
public key. While the proof of NAXOS relies on the ROM, Okamoto [Oka07] and
Fujioka et al. [FSXY12] use a similar approach that works in the standard model based
on pseudorandom functions. In the following, we will define the state as everything that
needs to be stored to compute the response to the next message of the protocol. Further,
we assume that the state of a session can be revealed independently of long-term keys
since long-term keys are long-lived and usually better protected in memory.

Extension to Multiple Challenges. While early security models considered a single
challenge query, more recent models extended this to multiple challenges. This is a
natural extension, in particular, when considering tightness. Interestingly, two different
flavors of multi-challenge security models have been proposed.
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Alice A (vkA, sskA) Bob B (vkB, sskB)

(pk, sk)← GenKEM

σA ← Sign(sskA, (A,B, pk)) if Vrfy(vkA, (A,B, pk), σA) 6= 1:
Reject and output ⊥

(c,K)← Encaps(pk)
if Vrfy(vkB, (A,B, pk, c, σA), σB) 6= 1: σB ← Sign(sskB, (A,B, pk, c, σA))

Reject and output ⊥ Accept and output K
K := Decaps(sk, c)
Accept and output K

pk, σA

c, σB

Figure 1: Explicitly authenticated AKE protocol using a key encapsulation mechanism
KEM = (GenKEM,Encaps,Decaps) and a signature scheme SIG = (GenSIG,Sign,Vrfy).
Long-term keys are signature key pairs, generated by Alice as (vkA, sskA)← GenSIG and
analogously for Bob.

– Multi-Bit Guess (MBG): For each query to Test, the challenger draws an indepen-
dent challenge bit bi. The adversary’s goal is to guess one of them.

– Single-Bit Guess (SBG): There is one global challenge bit b based on which all
queries to Test are answered. The adversary’s goal is to guess b.

Both approaches have been frequently used. The first approach was used in [BHJ+15,
GJ18, LLGW20], and the second approach in [CCG+19, DJ21]. While the MBG ap-
proach is not known to allow a tight composition with a symmetric primitive, the
SBG approach is tightly equivalent to a real-or-random style security notion, where the
adversary has to distinguish a game where all challenge keys are real from one where
all challenge keys are random. Thus, it exactly captures what is needed for a tight
composition with symmetric primitives, as noted by [CCG+19].

1.2.2 Generic Constructions
We recall two paradigms to generically construct AKE protocols from the basic crypto-
graphic building blocks that were introduced in Section 1.1.2. Parts of the results in
this thesis build upon the following constructions by establishing security definitions
for the building blocks that allow for a tight security proof.

Signatures for Explicit Authentication. A very simple and straightforward way to
construct an AKE protocol with explicit authentication is to use a KEM in combination
with a signature scheme. The generic construction is shown in Figure 1, illustrating a
key exchange between Alice and Bob. Both have signature key pairs as long-term keys,
i. e., (vkA, sskA) and (vkB, sskB), respectively, which are used to explicitly authenticate
each other. The KEM is used to derive the shared session key.

The protocol is executed as follows. Alice (the initiator of the session) draws an
ephemeral KEM key pair (pk, sk) and computes a signature σA on the public key along
with her own and Bob’s identity. She sends the tuple (pk, σA) to Bob. Bob verifies the
signature and if verification succeeds, he computes a ciphertext and an encapsulated key
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(c,K) using the ephemeral public key. He computes a signature σB on the ciphertext c
as well as both their identities and Alice’s previous message. The session key will be
the KEM key K. If Alice verifies σB successfully, she decapsulates the key and outputs
the result. If verification of the signature fails, then Alice (or Bob) will terminate the
session and output the failure symbol ⊥.

This protocol basically follows from generalizing the signed Diffie-Hellman protocol
[Sho99] which is the basis for many practical AKE protocols [Kra03, KHN+14, Res18].
In this case, the original Diffie-Hellman key exchange protocol [DH76] is acting as a
NIKE scheme which is known to imply KEMs [FHKP13]. One advantage of using a
NIKE is that it allows for a one-round protocol where the parties’ messages do not
depend on each other. However, constructing (efficient) NIKE schemes from other
assumptions than Diffie-Hellman is a challenging problem (e. g., [GKRS22]). KEM
schemes, on the other hand, are easier to construct, thus we focus on the KEM-based
protocol (as described above).

It might be desirable to tie the session key to the context of the session, e. g., the
identities of the involved parties and the session transcript. While this is not necessary
in general (i. e., it depends on the security requirements of the underlying building
blocks), it is common practice to use an additional key derivation function. We will
further elaborate on this below.

KEMs for Implicit Authentication. An alternative approach to using signatures
is to construct AKE from KEMs directly. That is, the involved parties will (implicitly)
authenticate each other with a KEM. The resulting protocol is shown in Figure 2.
Here, Alice and Bob both hold long-term KEM key pairs, denoted by (pkA, skA) and
(pkB, skB), respectively, which will be combined with an ephemeral KEM.

The protocol proceeds as follows. First, Alice chooses an ephemeral KEM key pair.
For disambiguation, we will denote this key pair by (p̃k, s̃k). She then uses Bob’s public
key pkB to compute a ciphertext and key (cA,KA) and sends (p̃k, cA) to Bob. Bob
computes two pairs of ciphertext and key (c̃, K̃) and (cB,KB) using p̃k and Alice’s
long-term key pkA. He derives key KA by decapsulating cA using his secret key skB.
Bob has now computed three keys, KA, KB and K̃, which allow him to derive the final
session key K. The key derivation may also include the context of the session. Apart
from this, we want to leave this procedure abstract for now. Finally, Bob sends (c̃, cB)
to Alice and she can compute the two remaining keys K̃ and KB using the ephemeral
secret key s̃k and her long-term secret key skA. She derives the session key in the same
way as Bob.

The above protocol allows for implicit authentication since active attacks can only be
detected once the session key is computed. This generic construction was first proposed
and analyzed in the identity-based setting [BCGP08]. Fujioka et al. [FSXY12] analyze
the protocol above in the standard model using a pseudorandom function to derive the
session key. Another approach would be to use a hash function which is then modeled as
a (quantum) random oracle as considered in [HKSU20]. Constructing authenticated key
exchange from KEMs is also interesting in the transition to post-quantum cryptography.
Since known lattice-based signatures are rather expensive in terms of signature sizes,
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Alice (pkA, skA) Bob (pkB, skB)

(p̃k, s̃k)← GenKEM

(cA,KA)← Encaps(pkB) (c̃, K̃)← Encaps(p̃k)
(cB,KB)← Encaps(pkA)

KB := Decaps(skA, cB) KA := Decaps(skB, cA)
K̃ := Decaps(s̃k, c̃) K := Derive(KA,KB, K̃, ctxt, “session key”)
K := Derive(KA,KB, K̃, ctxt, “session key”) K ′ := Derive(KA,KB, K̃, ctxt, “mac key”)
K ′ := Derive(KA,KB, K̃, ctxt, “mac key”) πB := MACK′(ctxt, “0”)
if πB 6= MACK′(ctxt, “0”) :

Reject and output ⊥
πA := MACK′(ctxt, “1”) if πA 6= MACK′(ctxt, “1”) :
Accept and output K Reject and output ⊥

Accept and output K

p̃k, cA

c̃, cB, πB

πA

Figure 2: Implicitly authenticated AKE protocol using a key encapsulation mechanism
KEM = (GenKEM,Encaps,Decaps). Long-term keys are KEM key pairs, generated by
Alice as (pkA, skA)← GenKEM and analogously for Bob. An additional deterministic func-
tion Derive is used to compute the final session key from encapsulated keys KA,KB, K̃
and context ctxt = (A,B, p̃k, cA, c̃, cB). Explicit authentication can be achieved by adding
a MAC as key confirmation step (gray boxes).

replacing the signatures with KEMs has been proposed for protocols like TLS or
WireGuard [SSW20, HNS+21].

Explicit Authentication via Key Confirmation. The KEM approach above lacks
explicit authentication and thus can only achieve weak forward security. To address
this, we can add a key confirmation message to turn any implicitly authenticated AKE
protocol into one with explicit authentication. This can be done, e. g., by using a message
authentication code (MAC) as described by [Kra05] for the HMQV protocol.

Adding key confirmation to the above protocol extends it by an additional round, as
illustrated in Figure 2. Instead of deriving only the shared session key, Bob will derive
a second key K ′ using an alternative key derivation function. We will provide more
details on this below. Then Bob uses K ′ to compute a (deterministic) tag πB on the
context and some fixed string. He sends πB together with the two ciphertexts c̃ and cB.
Alice first derives the session key K and MAC key K ′. Then she uses K ′ to verify πB
and if verification succeeds, she also computes a tag πA using some different fixed string
and sends it to Bob. Bob verifies the tag and only then, he accepts and outputs the
session key. If any verification fails, Alice or Bob will terminate and output the failure
symbol ⊥.

The alternative key derivation function could be defined such that it only differs
from the session key derivation function in the sense that it includes an additional
fixed string (cf. Figure 2). This allows for domain separation, e. g., both can then be
instantiated using the same hash function. For simplicity, we illustrate deterministic
MACs here, e. g., instantiated using a hash function.
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1.2.3 Password-Authenticated Key Exchange
The concept of password-authenticated key exchange (PAKE) was first introduced by
Bellovin and Merritt [BM92]. In this setting, parties no longer have long-term keys,
but we assume that two parties share the same password. Based on the knowledge
of this (possibly low-entropy) password, they can compute a shared session key. We
usually associate a role to the two parties interacting in a protocol, namely one party
is a user and the other one is a server. In general, there exist two different settings
or types of protocols. In the balanced setting, both user and server share the same
password, whereas in the unbalanced setting, the server stores some augmented version
of the password, e. g., a hash, which is why this type of protocol is also referred to as
augmented PAKE. In this work, we will focus on balanced PAKE protocols.

Security. The game-based security model is similar to the standard AKE setting.
The first formal model was given by Bellare, Pointcheval and Rogaway [BPR00]. Since
parties have passwords instead of long-term keys, a corruption will reveal the password
that is shared between two users in which case both parties are considered corrupted.

Passwords are considered to be chosen from a small set, thus the best attack that
should be possible is an online dictionary attack. The adversary can always guess a
password and initiate a session, but if the guess was wrong, it should not be able to
rule out a larger number of passwords. In particular, we want to protect against offline
dictionary attacks where the adversary can brute-force the password via an exhaustive
search locally without further interaction. Forward security is defined as for the AKE
setting. Thus, after the corruption of a password, all previously established session
keys should still be secure. As for standard AKE, we consider multiple challenges as
formalized by Abdalla, Fouque and Pointcheval [AFP05] to allow for tight composition.

Constructions of Balanced PAKE Protocols. There exist several PAKE proto-
cols based on the Diffie-Hellman key exchange. In the Encrypted Key Exchange (EKE)
paradigm introduced by [BM92], the password is used to encrypt the messages of the
key exchange (i. e., the Diffie-Hellman public keys). A similar approach is to hash the
password to a generator of the group and use this generator to perform the key exchange,
as done in SPEKE [Jab96]. The SPAKE2 protocol [AP05] performs the Diffie-Hellman
key exchange by involving additional group elements that are generated in a trusted
setup phase in advance. These public parameters are also referred to as the common
reference string (CRS).

The KOY protocol by Katz, Ostrovsky and Yung [KOY01] borrows techniques
from the Cramer-Shoup cryptosystem to construct the first practical PAKE without
random oracles, but it also relies on a CRS. This idea was generalized by Gennaro and
Lindell [GL03, Gen08] who construct PAKE protocols from hash proof systems. Their
construction builds upon a public-key encryption scheme and the language of ciphertexts
for that scheme, i. e., a tuple of message and ciphertext (m, c) is in the language if
there exists randomness r such that the encryption of m under r yields c, where we
parameterize the language over the public key. These ideas were further extended to
construct post-quantum secure PAKE based on lattices (e. g., [KV09, GK10]).
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Canetti et al. [CDVW12] use oblivious transfer (OT) to generically construct PAKE
protocols. In their two constructions, the password (interpreted as a bit string) is used
in multiple executions of the OT protocol. In particular, for each password bit, the OT
protocol is run twice: both parties once take the role of the sender and once that of the
receiver. The efficiency of this protocol relies completely on that of the OT protocol
and due to the “bit-by-bit” approach, it is rather unsuitable for practical applications.

1.2.4 Prior Work on Tightly-Secure AKE
The reason why constructing tightly-secure AKE is a challenging task is the underlying
commitment problem. We will first illustrate the various manifestations of the commit-
ment problem in the context of AKE. Then, we provide a summary of prior work on
tightly-secure AKE and explain how they resolved or circumvented the challenges.

The Commitment Problem. Compared to standard public-key encryption schemes,
security models for AKE are very strong in the sense that they allow the adversary
to adaptively obtain secret values (cf. Section 1.2.1). The commitment problem arises
when reducing to the hardness of a computationally hard problem or the security of
a building block. In particular, the reduction has to decide in which session(s) it will
embed the challenge instance. If a session is subject to a Test query, the reduction
can only learn something from the adversary’s behavior if it has indeed embedded a
challenge instance in this session. However, if the adversary decides to later reveal the
session key, then the reduction must output a valid session key. Depending on their
behavior and queries, the adversary might be able to compute the key itself and notice
whenever the simulation of the reduction fails. Since all queries can happen adaptively,
the reduction cannot know for certain which of the cases will happen, so it must commit
to either knowing the secret or not. The naive way to resolve this problem is to guess
the test session and then embed the challenge instance only in that session, with the
consequence of a non-tight proof.

We observe a similar manifestation of the commitment problem in the corruption of
long-term secret keys. Since Corrupt queries also happen adaptively, the reduction
must commit to which secret keys it actually knows or which it uses to embed a challenge.
If the long-term public key uniquely determines the corresponding long-term secret key,
we even run into an impossibility result. Based on the work from [BJLS16], Cohn-Gordon
et al. [CCG+19] extend the impossibility result and show that for such AKE protocols,
a security loss that is linear in the number of users is inherent. This applies in particular
to a large class of Diffie-Hellman based protocols like HMQV [Kra05], NAXOS [LLM07]
and variants such as [LM06, Ust08, YZ13]. In the context of KEMs, Han, Liu and Gu
[HLG21] give further impossibility results in the multi-user setting with corruptions.
They show that a security loss that is linear in the number of users is optimal for
an even broader class of KEM schemes than those covered by previous impossibility
results. This makes these KEMs insufficient to be used for implicit authentication in
tightly-secure AKE. When using a signature scheme for authentication, the problem
becomes even more paradoxical. The reduction must not only know signing keys for all
parties (and be able to compute signatures), but it must also be able to solve its own
challenge based on a valid signature forgery of the adversary. Due to this, we require
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a very strong security definition for the signature scheme, which is multi-user strong
unforgeability with corruptions (MU-SUF-CMAcorr). Although tightly-secure signature
schemes in this setting are non-trivial, there exist several (more or less) efficient schemes
in the random oracle model [Bad14, GJ18, DGJL21b] and even in the standard model
[BHJ+15, HJK+21].

We can go further and describe yet another variant of the commitment problem
when considering state reveals. In this case, the reduction must also know valid states
for all sessions, while at the same time tackling the other two commitment problems.
We now want to elaborate on how previous work resolved these problems.

AKE in the Random Oracle Model. In order to give a tight proof for the signed
Diffie-Hellman key exchange protocol, Gjøsteen and Jager [GJ18] slightly tweak the
protocol. In particular, the initiator must first send a hash of the ephemeral Diffie-
Hellman public key that will be used for the key exchange. In the security proof, this
hash function will be a programmable random oracle. Intended to serve as a commitment
in the protocol, the ROM allows the reduction to actually not commit to the public key
when the session is initiated, but only later when it knows whether the session qualifies
for a test session. Due to this change, we get a 3-round protocol, whereas the original
protocol can be executed in one round. They prove security in an MBG-style security
model under the DDH assumption.

In the protocol analyzed by Cohn-Gordon et al. [CCG+19], the two parties compute
three combinations of Diffie-Hellman keys based on long-term and ephemeral keys,
similar to the X3DH protocol. Their proof relies on the StCDH assumption and the
ROM which allows them to identify critical queries by the adversary and to “patch”
the random oracle accordingly. A similar proof strategy is employed by Diemert and
Jager [DJ21] as well as Davis and Günther [DG21] for TLS and SIGMA. Pan, Qian and
Ringerud [PQR21] revisit the problem of proving tight security of the original signed
Diffie-Hellman protocol. They show that the modification of Gjøsteen and Jager is not
necessary to give a tight security proof when using the StCDH assumption. All these
works rely on an SBG-style security model.

AKE in the Standard Model. The first tightly-secure AKE protocol was proposed
by Bader et al. [BHJ+15]. They focus on security in the standard model and generically
construct a 3-round AKE protocol from a (standard) signature scheme, a one-time
signature scheme and a KEM. The signature scheme needs to achieve existential
unforgeability in the multi-user setting with corruptions, whereas the KEM needs to
satisfy CPA security in the multi-user setting with corruptions (in MBG style). The
latter can, for example, be generically obtained by any CPA-secure PKE scheme using
the Naor-Yung double-encryption paradigm [NY90].

Liu et al. [LLGW20] also give a generic construction in the standard model following
the KEM and signature approach in Figure 1. The KEM needs to satisfy multi-user
multi-challenge CCA security (in SBG style). However, both constructions, [BHJ+15]
and [LLGW20], rely on an MBG-style AKE security model.
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AKE from Group Actions. Due to the properties of the underlying group action
structure, CSIDH is a good candidate to construct tightly-secure AKE based on isogenies.
In [dKGV20], de Kock, Gjøsteen and Veroni give a security proof of the triple Diffie-
Hellman protocol that was also considered in [CCG+19]. Their proof applies the same
techniques by relying on the GA-StCDH assumption and also achieves optimal tightness
(i. e., it loses an unavoidable factor linear in the number of users). The same result was
independently shown by Kawashima et al. in [KTAT20].

PAKE. Tight security for PAKE protocols has not nearly attracted as much attention
as for standard AKE. In [BIO+17], Becerra et al. show that the protocol PAK [BMP00]
is tightly secure under the GapCDH assumption for a single test query and weak forward
security. In a similar fashion, the result by Abdalla and Barbosa [AB19] shows that weak
forward security of the SPAKE2 protocol [AP05] can be proven achieved tightly under
the GapCDH assumption when considering multiple test queries. In contrast to that,
CPace, which was chosen for standardization, only has a non-tight security proof (in
fact, it loses a quadratic factor in the number of random oracle queries) and additionally
relies on the non-standard simultaneous Diffie-Hellman assumption [AHH21].

1.3 Overview of Results
This thesis improves upon previous results on tightly-secure AKE in various directions.
An illustrative overview of the main contributions is given in Figure 3. In particular,
we answer the following questions:
(1) Can we justify the use of standard system parameters for existing Diffie-Hellman

based protocols, in particular HMQV and NAXOS?
(2) How can we generically construct tightly-secure AKE in an SBG-style security

model that additionally allows for state reveals . . .
(a) . . . in the random oracle model?
(b) . . . in the standard model?

(3) Can we construct a post-quantum and tightly-secure PAKE protocol?
Since the implicitly-authenticated protocols HMQV and NAXOS are subject to known
tightness impossibility results, we use the GGM to analyze their concrete security. We
provide more details in Section 1.3.1 and the full paper is given in Appendix A. Both
protocols achieve weak forward security, can be executed in one round and resist state
reveal attacks.

In Section 1.3.2, we then show how to generically construct two AKE protocols:
AKEwFS is built from non-committing key encapsulation (NCKE) mechanisms only and
achieves weak forward security, whereas AKEFS also uses a MU-SUF-CMAcorr secure
signature scheme and achieves full forward security. Both protocols need two rounds of
communication, allow for state reveals and rely on the random oracle model. We provide
more details on how to construct NCKE from hash proof systems below. The full paper
is given in Appendix B. Since the NCKE construction inherently relies on the random
oracle model, we want to focus on protocols in the standard model next. By adding
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Figure 3: Overview of our results: we illustrate the construction of (P)AKE protocols
(gray rounded boxes) based on their building blocks (white rounded boxes) and underly-
ing hardness assumptions (no boxes). Below we indicate which level of forward security
the protocols provide and the number of rounds.

an extra round, we show that we can construct an AKE protocol from a weaker KEM,
namely a multi-user single-challenge one-time CCA (MUSC-otCCA) secure KEM. The
resulting protocol is explained in Section 1.3.3 and the paper is given in Appendix C.

Finally, we show how to construct a PAKE protocol in the group action setting based
on CSIDH, thus aiming for post-quantum security. For our tightly-secure one-round
protocol X-GA-PAKE we require a new non-standard assumption, the square-inverse
strong Diffie-Hellman (SqInv-GA-StCDH) assumption. We also discuss a second protocol
which is based on a standard assumption, but requires three rounds and is non-tight.
Details are provided in Section 1.3.4 and Appendix D.

1.3.1 Concrete Security of HMQV and NAXOS

In [KPRR23] (Appendix A), we analyze the concrete security of the HMQV [Kra05]
and NAXOS [LLM07] protocols in the GGM. This is in particular interesting since we
know that a security loss that is linear in the number of users is inherent [CCG+19].
Additionally, the original security proofs are carried out in the stronger security model
with additional state reveals. Although no formal impossibility results have been shown,
the underlying commitment problem indicates that a loss at least linear in the number
of sessions can most likely not be avoided either. We also analyze the protocol studied
in [CCG+19]. Due to the similarity to the Extended Triple Diffie-Hellman (X3DH) used
in Signal, we denote this protocol by X3DH−. It can also be described as the NAXOS
protocol without the “NAXOS hashing trick” to derive the ephemeral secret exponent.

To give concrete security bounds in the GGM, we first extract the core of the
protocols in terms of a multi-user variant of the CDH problem. With these assumptions,
we can prove security in the ROM in a straightforward way with (mainly) a single
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reduction. We can then analyze these new CDH problems in the GGM to derive concrete
security bounds.

Multi-User CDH Problems with Corruptions. The reason why randomizing
the (Gap)CDH problem is insufficient for tight security is that the reduction needs to
answer adaptive Corrupt and RevealState queries of the adversary. Secret keys
and states are exponents and must be known to the reduction in order to answer
those queries. To address this, we define a multi-user version of the GapCDH problem
with adaptive corruptions. We call this problem the CorrGapCDH problem. In order
to win, the adversary has to provide the CDH solution to some combination of the
input challenges which have not been corrupted. For X3DH−, we tweak this problem by
splitting the set of challenges into two disjoint subsets and the solution must contain one
element from the first subset and one from the second subset. Further, only exponents
from the first subset can be revealed via a corruption.

To mirror the HMQV protocol, where identities and messages are additionally hashed
together to derive an exponent, we extend the CorrGapCDH problem by providing
an additional challenge oracle. This challenge then needs to be embedded in the
CDH solution. Due to the challenge-response character, we denote this problem by
CorrCRGapCDH.

Proving Security of HMQV, NAXOS and X3DH−. The variants of the GapCDH
problem described above allow us to tightly prove the security of the three protocols
in the random oracle model. By (non-tightly) relating the problems to the standard
GapCDH problem, we additionally get an improvement of the original security proofs
of HMQV and NAXOS which were proven in the single-challenge setting. In particular,
we extend these results to the multi-challenge setting and show that the bound is
independent of the number of test queries. An interesting question is whether this is
due to our new proof technique or whether it would have been possible in the first
place. While the typical strategy of guessing one out of S sessions in total is reasonable,
guessing T possible test sessions would result in an exponential loss of

(
S
T

)
for realistic

choices of S and T . Thus, the naive approach of a hybrid argument and replacing
challenge keys one by one seems to be the most natural proof strategy, but it also comes
with a security loss linear in T .

Due to the weaker security model (without state reveals), the original bound of
X3DH− does not depend on the number of (test) sessions. By using the asymmetric
version of the problem, which is tightly implied by CorrGapCDH, and a case distinction
in the proof, our analysis matches the (optimal) bound of [CCG+19].

Analysis in the GGM. We prove lower bounds in the GGM for both the CorrGapCDH
problem and CorrCRGapCDH problem. The first one matches that of the discrete loga-
rithm problem and is thus optimal. Although we cannot achieve the same bound for
CorrCRGapCDH, we provide an analysis of the bit security for conservative numbers of
oracle queries that justifies choosing standard parameters. Thus, assuming that the
best attacks are indeed generic, it is not necessary to increase the size of elliptic curve
groups.
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1.3.2 Tightly-Secure AKE in the ROM
In [JKRS21] (Appendix B) we look at two generic AKE constructions. The first one is
the generic construction from KEMs (cf. Figure 2) which we call AKEwFS. The second
one follows the explicitly authenticated two-round protocol in Figure 1, but for efficiency
reasons, we combine it with a key confirmation hash so that only the sender needs to
compute a signature. We call this protocol AKEFS.

We are interested in determining a security notion for the underlying KEM when
aiming for weak forward security, resistance against KCI attacks and state-reveal
attacks for multiple test sessions, which allows us to prove tight security. Due to several
manifestations of the commitment problem (cf. Section 1.2.4), we follow the approach
of a non-committing KEM.

Non-Committing Key Encapsulation. The approach of mirroring the AKE secu-
rity experiment as done in Section 1.3.1 suggests defining a multi-user multi-challenge
security notion for KEMs with corruptions. However, in this naive approach, we en-
counter one important issue. Since we aim for security with a single challenge bit (as in
the AKE SBG model), we need to restrict the adversary from getting challenges for
users that are corrupted and vice versa. Otherwise, this allows the adversary to trivially
distinguish the KEM keys. Looking at the AKE proof strategy, this restriction prevents
us from solving the commitment problem. When a session is initiated and the involved
parties are not (yet) corrupted, we cannot know whether this session will possibly be a
test session. At the same time, long-term or ephemeral secrets could be corrupted at a
later point. This makes it impossible to decide whether a challenge should be embedded.

To address this, we strengthen the definition of KEMs and propose the notion of
(multi-receiver) non-committing key encapsulation (NCKE) schemes. An NCKE scheme
is defined relative to a simulator and a random oracle. All algorithms (including those of
the simulator) have access to the random oracle. The simulator ensures that, whenever
the adversary obtains a challenge ciphertext and later decides to corrupt the user, the
KEM key that was given as challenge is exactly the result of decapsulating the challenge
ciphertext with the corrupted secret key. Although the ROM is a strong tool in itself
(cf. Section 1.1.4), there must also be sufficient entropy in the secret key of the NCKE
scheme when given the public key. We show that for a universal1 hash proof system with
a hard multi-instance subset membership problem, we can describe an NCKE simulator
in the ROM. Such a hash proof system can in turn be tightly instantiated, e. g., based
on the DDH assumption.

Constructing AKE from NCKE. In AKEwFS we simply replace the KEMs in Figure 2
with NCKE schemes. We use an independent random oracle to derive the shared session
key from the three intermediate KEM keys and the context of the session. In the security
proof, we can embed challenge keys of the NCKE scheme in all sessions at the same time.
We then rely on the NCKE simulator to ensure that those keys are indistinguishable
from random as long as the secret key is not corrupted and that they look valid as soon
as a corruption happens.

In our second protocol AKEFS, the sender uses a signature scheme and the receiver
uses an NCKE scheme for authentication. Combining this with an additional key
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confirmation hash allows to explicitly authenticate both parties in a two-round protocol.
For forward security, we use an additional ephemeral NCKE instance in each session.
The signature scheme needs to satisfy the strong notion of MU-SUF-CMAcorr and can
be instantiated using the signature scheme of Gjosteen and Jager [GJ18] which is based
on CDH and DDH or the more recent DDH-based scheme of Diemert et al. [DGJL21b]
which has even smaller signatures.

State Reveal Attacks. Even the strong notion of NCKE does not allow to protect
against state reveal attacks. We use ideas from the NAXOS protocol and protect the
ephemeral secrets additionally with the long-term key. For this, each party chooses a
symmetric key as part of the long-term key which is then used to encrypt the secret
state information. Since the NCKE scheme already relies on the ROM, we instantiate
this encryption with a random oracle and a one-time pad which allows us to resolve the
underlying commitment problem. Although this approach seems somehow generic, it is
worth mentioning that on its own, a “state encryption” is not necessarily sufficient. As
for long-term keys, we need some form of entropy in the ephemeral secrets which makes
this approach not applicable to, e. g., the signed Diffie-Hellman protocol.

1.3.3 Tightly-Secure AKE in the Standard Model
While the approach described in the previous section highly relies on the random
oracle model, our follow-up work [HJK+21] (Appendix C) focuses on tightly-secure
AKE in the standard model. We start with the work by [LLGW20] which proposes
an explicitly authenticated protocol based on the generic construction with a KEM
and signature scheme. While their work achieves tight security in the Multi-Bit Guess
security model, we develop new intermediate security notions that allow to prove security
in the Single-Bit Guess model and can also be instantiated in the standard model.

In this work, we also propose a new MU-SUF-CMAcorr secure signature scheme that
addresses a flaw in the signature scheme of [BHJ+15]. The signature scheme relies on
the Matrix Decisional Diffie-Hellman assumption (MDDH) in bilinear groups which can
be seen as a generalization of the standard DDH assumption (cf. [EHK+17]).

Our Starting Point: Two-Round AKE. We start with the generic approach as
shown in Figure 1. While it is clear that MU-SUF-CMAcorr security is needed for the
signature scheme, the exact security of the KEM depends on the model and protocol
design. As long as we do not consider state reveal queries, we can show that a multi-user
and multi-challenge secure KEM with exactly one decryption query (therefore denoted
by MUC-otCCA security) is sufficient to achieve tight security. Unfortunately, it is
unclear how to make use of the fact that only a single decryption query is allowed.
Existing constructions of KEMs (e. g., [GHKW16, GHK17, HLLG19]) that are secure
in the multi-user multi-challenge setting achieve full CCA security.

Adding a Nonce. By changing the protocol, we aim to weaken the security required
for the KEM further. In particular, we want to reduce the number of challenges for each
public key to a single one. In the previous protocol, we needed multi-challenge security
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because the adversary can replay a message from the sender. Thus, the ephemeral public
key contained in this message may be used multiple times. However, a simple trick can
prevent this: we add a nonce that is chosen by the responder. This ties the ephemeral
public key chosen by the sender to the nonce such that it cannot be replayed.

We show that the KEM security notion can now be relaxed to multi-user single-
challenge one-time CCA (MUSC-otCCA) security to give a tight security proof in the
standard model. We denote this protocol by AKE3msg.

Adding a Symmetric Encryption Scheme. The above construction cannot achieve
tight security in the presence of state reveals. Thus, when aiming for security in this
model, we need to strengthen the security notion of the KEM again. Further, we borrow
the “state-encryption” technique from the previous section, but we need to replace the
random oracle with a symmetric encryption scheme. In order to perfectly work together
with the symmetric encryption scheme, we identify two main properties for the KEM:
(information-theoretic) uniformity and key indistinguishability, which we capture in the
definition of multi-user simulatable (MU-SIM) security. The two properties are closely
related to those of hash proof systems. In fact, we show that MU-SIM is implied by a
universal2 hash proof system with a multi-instance subset membership problem.

If the symmetric encryption scheme is secure against multi-challenge random plain-
text attacks, the AKE protocol achieves security against state reveal attacks. The bound
is tight in the advantage of the KEM and signature scheme and loses a factor linear
in the number of users for the symmetric encryption scheme. In practice, increasing
system parameters for symmetric-key primitives is tolerable since it does not come with
a huge loss in efficiency.

Instantiating the MU-SIM KEM from MDDH and showing that every MU-SIM secure
KEM is also MUSC-otCCA secure, we can instantiate both the KEM and signature
scheme in AKE3msg from MDDH.

1.3.4 PAKE from Group Actions
All instantiations of AKE protocols so far relied on hardness assumptions in prime-order
groups. In [AEK+22] (Appendix D), we show how to construct password-authenticated
key exchange protocols from group actions. In particular, we are interested in the
CSIDH group action since it is a promising candidate for post-quantum security.

However, CSIDH comes with some additional limitations, namely, we do not know
how to sample a set element (i. e., a supersingular elliptic curve) obliviously. This
translates to the problem of hashing into the graph of supersingular elliptic curves which
has been studied in [BBD+22, MMP22] and remains an open problem. Thus, the only
known way to sample an element of the set uniformly at random is to first sample a
group element and then apply the group action. This prevents us from adapting known
protocols such as SPEKE [Jab96] or CPace [HL19] to the CSIDH setting.

Instead of a hash function, we suggest using a CRS that consists of two random set
elements. Applying a bit-by-bit approach, the parties perform a group action Diffie-
Hellman key exchange for each password bit, where the bit indicates which of the two
set elements in the CRS is used as a basis.
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Group Actions with Twists. It turns out that the proposed protocol is insecure
when instantiated with CSIDH. This is due to the additional structure of the specific
group action. For each supersingular elliptic curve, we can easily compute its twist
which is another related supersingular elliptic curve. Translating this property from the
group action setting to the prime-order group setting, this would mean that we can
efficiently compute g 1

x from gx. This property is useful for more efficient constructions
(e. g., [LGd21]), but also poses a threat when relying on non-standard assumptions. In
fact, twists allow for an offline dictionary attack against the proposed protocol. In the
following, we describe two approaches to prevent the attack.

First Approach: Using a Commitment. The attack against the initial protocol
relies on the fact that the responder can choose its message depending on the initiator’s
message. Thus, a natural way to prevent the attack is to let the responder commit to
the message in the first flow of the protocol. This can be achieved by sending, e. g., a
hash of the message. We call this protocol Com-GA-PAKE.

Modeling the hash function as a random oracle allows to prove security based on
an interactive version of the simultaneous Diffie-Hellman problem which can be (non-
tightly) reduced to the GA-GapCDH problem. However, we also need to apply a guessing
technique to prove security of the protocol since we need to extract the adversary’s
commitment from the hash queries to embed our own challenge. Additionally, the
protocol needs three rounds.

Second Approach: Using Cross-Terms. To improve upon the shortcomings of
the first approach, we propose a second protocol that prevents the offline dictionary
attack. While the protocol requires to double the number of elements that need to be
sent, it can be executed in one round. The protocol, which we call X-GA-PAKE, relies
on a new assumption, namely the Square-Inverse Group Action Strong Diffie-Hellman
(SqInv-GA-StCDH) assumption. On input g ?x̃ for random g $← G, it requires to compute
(y, g2 ? y, g−1 ? y), with additional access to a decision oracle. Although it is a non-
standard assumption similar to the simultaneous Diffie-Hellman assumption, we can
argue about its generic hardness even in the presence of the twisting functionality. The
main advantage, however, is that it is a non-interactive assumption and re-randomization
of the challenge allows us to tightly prove the security of X-GA-PAKE. This gives us
the first tightly-secure PAKE protocol from isogenies.
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Chapter 2

Discussion and Outlook

The results of this thesis mainly consider the most fundamental form of authenticated
key exchange. We gave tightness results for established protocols from the literature, as
well as new generic constructions. However, even for this rather simple form of protocol,
there exists a large number of security models, each with slight differences and many
of them are incomparable. We elaborate on the implications for security proofs and in
particular tightness in Section 2.1.

We also considered password-authenticated key exchange, a variant of standard AKE.
In Section 2.2, we will discuss other types of key exchange protocols with advanced
functionalities, such as group key exchange or ratcheted key exchange. While our PAKE
protocol relied on group actions, the other protocols were either designed for Diffie-
Hellman groups directly or we instantiated the building blocks based on those. Thus,
we conclude with an outlook on post-quantum tightly-secure key exchange protocols
in Section 2.3. As part of this, we also want to give an intuition on how we can prove
security of our PAKE protocol in the quantum random oracle model.

2.1 Variety of Security Models
Even for standard AKE, there exist numerous different security models. The main
differences evolve around which level of authentication can be achieved, what information
the adversary gets via reveal queries and when sessions are partnered. Thus, all of
these differences influence the definition of trivial attacks as well as the exact security
guarantees. While a definition that captures strong adversarial capabilities may be
interesting from a theoretical point of view, one also always needs to find the balance
between the practical instantiability of protocols and the motivation of attack scenarios.

Several works have tried to compare different models (e. g., [CBH05, XWF+08,
Cre09a, Cre09b, dFW20]), most notably the two models by Bellare and Rogaway
[BR93a, BR95b], the Canetti-Krawczyk (CK) model [CK01], its extension that was
used to analyze HMQV [Kra05] and the extended Canetti-Krawczyk (eCK) model
[LLM07]. It turns out that most of these models are syntactically as well as practically
incomparable, making it hard to judge which is the strongest or the “correct” model.
While it is clear that forward security is strictly stronger than weak forward security,
leading to additional variants such as the eCK-PFS model [CF12], the most significant
difference between models is which session-specific secrets can be revealed. This is
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captured in a state reveal query or an ephemeral key reveal query. However, these
two are incomparable [XWF+08, Cre09a, Cre09b]. Moreover, natural protocols often
cannot achieve security in these models without relying on techniques that derive
intermediate secrets by combining ephemeral secrets with long-term secrets as done
in [LLM07, Oka07, FSXY12]. Similarly, we have to judge the implications for tight
security. It is important to study the conditions for tight security in different models in
order to allow for an objective evaluation of different protocols. For example, if strong
assumptions are necessary to construct a more involved protocol with tight security and
strong security guarantees, it might still be reasonable to employ a simpler protocol
with tight security in a weaker model (e. g., without state reveals).

In this regard, we should always keep in mind that the overall goal of a key exchange
protocol is to use the session key in some other application, i. e., we want to compose
AKE with other primitives. So far, we only considered game-based security. However,
simulation-based security is motivated exactly by strong composability guarantees.
In simulation-based security notions such as [BCK98, Sho99, CK02], we consider a
real-world execution and an ideal-world execution of the protocol, where the latter is
modeled such that it is secure by definition. By constructing an ideal-world simulator
from a real-world adversary, we can show that both worlds are computationally indis-
tinguishable. There exist many different variants of simulation-based security like the
universal composability (UC) framework [Can01], blackbox simulatability [PW01] and
follow-up works addressing shortcomings of these early models for specific primitives
(e. g., [CDPW07, HS15]).

Moreover, it gets a bit tricky when corruptions are considered. Simulation-based
security models with static corruptions, where the adversary performs all corruptions
before any honest party receives an input, are often equivalent to the corresponding
game-based security notion with adaptive corruptions [Sho99, FHH14]. However, this
equivalence comes with a non-tight bound since game-based security with static cor-
ruptions non-tightly implies security with adaptive corruptions. On the other hand,
simulation-based security with adaptive corruptions is often strictly stronger than game-
based security and may even be impossible to achieve in the standard model. This is due
to the fact that the simulator in the ideal world has to resolve the commitment problem.
Whenever this is considered impossible, security definitions make the restriction that
no queries happen that would cause the commitment problem (cf. [FHH14]).

Especially for PAKE protocols, simulation-based security enjoys the advantage that
it makes no assumption about the distribution of passwords and, most importantly,
passwords can be correlated. Different formulations of UC-security for PAKE exist,
e. g., [CHK+05, ABB+20, AHH21]. A programmable random oracle allows to prove
security of the CPace protocol even in the presence of adaptive corruptions (cf. [AHH21]).
They also provide concrete, though non-tight, bounds. Interestingly, most other works
do not state concrete bounds when proving security in simulation-based models.

2.2 Advanced Key Exchange Protocols
There exist several use cases where traditional AKE is insufficient to provide the desired
functionalities or does not accurately model the exact application. Examples include
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the group AKE setting where multiple parties want to compute a shared session key or
messaging protocols with long-lived sessions. Security models and proofs for protocols
that provide these advanced functionalities are often even more complex than those
for standard AKE. Thus, the focus is mostly on giving a formal proof in the first place
instead of giving a tight proof.

Nevertheless, the techniques that have been established to achieve tight security
may carry over to those settings. In [PQR22], Pan, Qian and Ringerud study the tight
security of the signed Diffie-Hellman protocol in the group setting and are able to prove
similar results as for the two-party case. Another promising direction is tightness for
privacy-preserving, anonymous or deniable key exchange (cf. [GSU12, UG15, SSL20,
RSW21, LLHG22, IY22]).

The analysis of real-world AKE protocols such as TLS is usually more complex due
to different modes or additional steps that are often abstracted away, e. g., they consider
pre-shared keys (PSK) and a key schedule. If a protocol consists of multiple stages, we
ideally want to show security for intermediate keys and further secrets that are derived
to be used in other applications. To capture this, a security model for multi-stage key
exchange was introduced by Fischlin and Günther [FG14] who analyzed the security of
the QUIC protocol [Ros13]. In the context of TLS, Davis et al. [DDGJ22] analyze the
concrete security of the PSK mode and provide a new abstraction for the key schedule.
While the key schedule is often modeled as random oracle(s), this needs additional care
in order to account for dependencies between different components. A similar analysis
would be interesting in the context of Signal. Cohn-Gordon et al. [CCD+20] thoroughly
analyze the initial key exchange X3DH and the double ratchet protocol used in Signal
[MP16, PM16]. They prove security in a multi-stage key exchange model under the
GapCDH assumption and in the random oracle model. However, each key derivation
function is modeled as a single random oracle and their proof is highly non-tight. The
tight analysis of TLS gives hope that it may be possible to get a tight(er) bound by
applying a similar approach to carefully model and patch the random oracles.

The double ratchet can also be considered as a standalone primitive. In ratcheted
key exchange (RKE) as considered in [BSJ+17, PR18, JMM19, BRV20], parties do not
have fixed long-term keys, but they keep a state that is updated over time. This way,
we can not only get forward security but also post-compromise security, meaning that
a party can recover from a corruption after some time. As security models for RKE
usually model adaptive corruptions, tight security is probably hard to achieve, even in
the two-party case. Considering that it is still a rather young primitive, the focus has
been on formalizing the correct security properties. In this context, Alwen, Coretti and
Dodis [ACD19] define the more general notion of secure messaging which they build
from continuous key agreement (CKA). Recently, the group setting of CKA, denoted by
continuous group key agreement (CGKA) [ACDT20], has attracted a lot of interest. As
opposed to standard group key exchange, the groups can be dynamic, i. e., members can
be added or removed. CGKA is the main component in the MLS protocol [BBR+22]
that is being developed by the IETF as future standard for secure group messaging. It
can be expected that as soon as security notions and concepts are more established, the
focus will also shift towards improving the concrete security bounds of these protocols,
as already raised as an open question in [ACDT20].
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2.3 Post-Quantum Secure Protocols
Many tightly-secure AKE protocols rely either directly on Diffie-Hellman assumptions
or define building blocks that are then instantiated based on those assumptions. Due
to their limited structure, group actions are mostly not suitable to be used in these
instantiations, e. g., our results from Sections 1.3.2 and 1.3.3 based on hash proof
systems. The only existing hash proof system based on group actions [ADMP20] uses a
similar bit-by-bit approach as our PAKE protocol and relies on a multi-instance version
of GA-DDH for which we do not know a tight reduction to the single-instance version.
It would be interesting to study hash proof systems from lattices in this multi-instance
version, e. g., the scheme of [BBDQ18]. If we want to construct AKE from lattices using
our generic constructions, it is also necessary to take into account correctness errors.

In [PW22], Pan and Wagner study tightly-secure signatures in the multi-user setting
with corruptions from lattices and group actions. They refine the transformation from
lossy identification schemes and sequential OR proofs by Diemert et al. [DGJL21b] such
that it can also be applied in the lattice setting. However, their tightly-secure signature
scheme relies on the plain Learning With Errors (LWE) assumption which, in contrast
to the Module LWE or Ring LWE (cf. [Pei15]) assumption, requires larger parameter
choices resulting in larger public key sizes and makes schemes rather inefficient. Their
signature scheme based on group actions suffers from the same inefficiency as the hash
proof system, but it avoids the loss arising from the multi-instance GA-DDH assumption
by observing that lossy keys can be correlated. Thus, tight security can be achieved
based on the single-instance GA-DDH assumption in the ROM. They leave it as an open
problem to prove security of their transformation in the quantum random oracle model
(QROM).

Our PAKE protocols as well as the AKE protocol based on CSIDH [dKGV20,
KTAT20] are also only proven secure in the ROM. We believe that security in the
QROM will require a similar approach as that used in our follow-up work where we
prove security for hashed ElGamal based on group actions [DHK+22]. In this work, we
show that a non-standard variant of the GA-StCDH assumption (where the DDH oracle
can be queried in superposition) is needed to prove security of the (unmodified) scheme
in the QROM. However, it is possible to prove security based on the standard GA-StCDH
assumption when adding a key confirmation hash. Adding a key confirmation hash
to our PAKE protocol thus not only allows a proof in the QROM, but also provides
explicit authentication and (full) forward security.
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Abstract. We introduce CorrGapCDH, the Gap Computational Diffie-Hellman
problem in the multi-user setting with Corruptions. In the random oracle model,
our assumption tightly implies the security of the authenticated key exchange
protocols NAXOS in the eCK model and (a simplified version of) X3DH without
ephemeral key reveal. We prove hardness of CorrGapCDH in the generic group
model, with optimal bounds matching the one of the discrete logarithm problem.
We also introduce CorrCRGapCDH, a stronger Challenge-Response variant of
our assumption. Unlike standard GapCDH, CorrCRGapCDH implies the security
of the popular AKE protocol HMQV in the eCK model, tightly and without
rewinding. Again, we prove hardness of CorrCRGapCDH in the generic group
model, with (almost) optimal bounds.
Our new results allow implementations of NAXOS, X3DH, and HMQV without
having to adapt the group sizes to account for the tightness loss of previous
reductions. As a side result of independent interest, we also obtain modular and
simple security proofs from standard GapCDH with tightness loss, improving
previously known bounds.

Keywords: Authenticated key exchange, HMQV, NAXOS, X3DH, generic hardness.

1 Introduction

Authenticated key exchange (AKE) is a fundamental cryptographic protocol where two
users agree on a joint session key. In a simple and efficient blueprint of Diffie-Hellman
protocols, Alice (holding long-term key ga) sends a random ephemeral key gx to Bob;
Bob (holding long-term key gb) sends a random ephemeral key gy to Alice. After
receiving their input, both users derive the joint session key K from the four Diffie-
Hellman values gab, gay, gxy, gbx. The practically relevant protocols HMQV [Kra05],
NAXOS [LLM07], and X3DH− [CCG+19] (a simplification of Extended Triple Diffie-
Hellman X3DH [MP16]) fall into this class of Diffie-Hellman protocols, see Figure 1.
They are all two message protocols with implicit authentication, namely, only the
designated users can share the same key and together with a MAC they can confirm
their session keys and authenticate each other explicitly.
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We highlight that HMQV is the well-known “provably secure” variant of MQV
[MQV95, LMQ+03] which is included in the IEEE P1363 standard for key exchange
[P1300]. X3DH− is essentially the Extended Triple Diffie-Hellman (X3DH) key exchange
protocol without involving any signature and ignoring the server. The original X3DH
protocol is used for the initial key exchange in Signal, where the receiver publishes
(signed) prekeys on a server which can be retrieved (asynchronously) by the sender.
The NAXOS protocol is X3DH− combined with the “NAXOS hashing trick” which is
marked with a dashed box in Figure 1.

Alice (a,A := ga) Bob (b, B := gb)

x $← Zp
y $← Zp

X3DH−, NAXOS : K := H(ctxt, Y a, Bx, Y x) K := H(ctxt, Ay, Xb, Xy)

HMQV : K := H(ctxt, (Y Be)x+ad) K := H(ctxt, (XAd)y+be)

X := gx

Y := gy

ctxt := (A,B,X, Y )
d := H̄(X,Bob); e := H̄(Y,Alice)

eskA
$← {0, 1}λ;x := G(eskA, a)

eskB
$← {0, 1}λ; y := G(eskB , b)

Figure 1: Overview of different AKE protocols, HMQV, X3DH−, and NAXOS. NAXOS
computes exponents x and y as shown in the dashed box. We make a small twist to
HMQV that includes the context ctxt in computing the session key K. This twist is to
avoid the trivial winning of an adversary in the eCK model (see Section 6) and is also
applied in the analysis of [BCLS15].

AKE Security Model. Adversaries against AKE protocols can control all messages
transferred among involved users, and they can also reveal some of the shared session
keys and the long-term secret keys of honest users. These capabilities are captured
by security models such as [BR94, CK01, LLM07]. The goal of an adversary is to
distinguish a non-revealed session key from a random key of the same length. We use
the extended Canetti-Krawczyk (eCK) model [BR94, CK01, LLM07] in a game-based
formulation of [JKRS21] that allows adversaries to register dishonest users, corrupt
long-term secret keys of the N ≥ 2 honest users, reveal ephemeral states and session
keys of the S sessions. The adversary is allowed to make T test queries based on the
same random bit b. It captures weak forward secrecy (which is the strongest forward
secrecy a two-pass implicit AKE protocol can achieve [Kra05]) and security against
key-compromise impersonation (KCI) attacks and reflection attacks. We stress that our
model is using a single challenge bit and hence allows for tight composition of the AKE
with symmetric primitives [CCG+19].

Tightness. The security of AKE protocols is usually established by a security reduction.
More precisely, for any adversary A against an AKE protocol with success probability
εAKE, there exists an adversary B with roughly the same running time that breaks the
underlying assumption with probability εAss = εAKE/`. The security loss ` plays an
important role in choosing the system parameters. If ` is large, one has to increase the
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size of the underlying group G to account for the security loss. Optimally, ` is a small
constant in which case we call the reduction tight.

Security proofs for AKE protocols are rather complex and the resulting bounds
are highly non-tight [Kra05, LLM07, CCG+19, Ust08, SE16, PW11]. A reduction B
usually makes several case distinctions and, by guessing the behavior of an adversary
in each case, B embeds a problem instance into either the protocol transcripts or the
users’ public keys. In the end, this guessing strategy ends up with a large security loss.
Most of the AKE protocols lose a linear (or even quadratic) factor in the number of
users N , the number of sessions S, and the number of test sessions T . Even worse,
HMQV and its variants (such as [Ust08, SE16, PW11]) additionally require the Forking
Lemma [PS00] to rewind the adversary and bound its success probability, which ends
up with an even larger security loss. X3DH− is a noteworthy exception because it loses
only a linear factor in N [CCG+19]. This linear loss in N is shown to be optimal for
a large class of Diffie-Hellman protocols [CCG+19], including our simple blueprint of
Diffie-Hellman protocols.

1.1 Our Contributions

In this paper, we simplify the difficulty of proving AKE protocols by introducing new
variants of the Computational Diffie-Hellman (CDH) problem in the multi-user setting:
– We introduce n-CorrGapCDH, the Gap Computational Diffie-Hellman problem in
an n-user setting with Corruptions. The hardness of (N + S)-CorrGapCDH tightly
implies the security of NAXOS and X3DH−.

– We introduce (n,QCh)-CorrCRGapCDH, a stronger Challenge-Response variant of
n-CorrGapCDH. The hardness of (N + S,QRO)-CorrCRGapCDH tightly implies the
security of HMQV without rewinding.

Recall that in the eCK model the variables N , S, T , and QRO correspond to the number
of users, sessions, test queries, and random oracle queries, respectively. For NAXOS and
HMQV, we prove security with state corruptions. For X3DH−, state corruption is not
allowed, since it will lead to a trivial attack.

We prove our new assumptions based on the Gap Diffie-Hellman (GapCDH) as-
sumption [OP01, ABR01] via non-tight reductions. Combined with these non-tight
reductions, we give simple, intuitive and modular security proofs of X3DH−, NAXOS
and HMQV. For NAXOS and HMQV, we obtain tighter security bounds, and for X3DH−
we match the optimal bound from [CCG+19]. Our results in the random oracle model
are summarized in Figure 2.1

The main novelty of our new multi-user CDH assumptions lies in their practical
applicability. We show the quantitative hardness of CorrGapCDH in the Generic Group
Model (GGM) [Sho97, Mau05], which is optimal and matches the one of the discrete

1 Our new and previously known bounds for HMQV in Figure 2 are stated in the eCK model
disallowing reflection attacks. The reason is that for reflection attacks, one additionally
requires the hardness of Square Diffie-Hellman (i.e., compute ga

2
from ga) which is non-

tightly equivalent to CDH. We remark that our generic group bounds from Figure 3 can be
shown in the full eCK model allowing reflection attacks.
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Security Security loss wrt. GapCDH
wFS St tightly implied by Old New

NAXOS
√ √

(N + S)-CorrGapCDH T (N + S)2 (N + S)2

X3DH−
√

– (N + S,N)-CorrAGapCDH N N
HMQV

√ √
(N + S,QRO)-CorrCRGapCDH QROT (N + S)2 QRO(N + S)2

Figure 2: Security of the AKE protocols NAXOS, X3DH−, and HMQV in the eCK
model. St stands for state reveal attacks and wFS stands for weak forward secrecy. The
“Security tightly implied by” column names the new multi-user problem which tightly
implies the AKE’s security. The last two columns contain old and new security loss
for the AKE protocols relative to the standard GapCDH problem, ignoring constants.
HMQV additionally incorporates the

√
εGapCDH loss due to the Forking Lemma.

logarithm problem. We also prove the hardness of CorrCRGapCDH in the GGM and it is
(almost) optimal. Our new results in the GGM support the implementation of NAXOS,
X3DH−, and HMQV without increasing the group sizes to compensate the security loss
of the previous reductions. Our results in the generic group model are summarized in
Figure 3.

1.2 Multi-User CDH with Corruptions

Let par = (p, g,G) be system parameters that describe a group G of prime order
p = |G| and a generator g of G. Given ga1 , ga2 , the standard GapCDH problem (over
par) requires to compute the Diffie-Hellman key ga1a2 [OP01, ABR01]. Here Gap stands
for the presence of a (decisional) Gap Oracle which on input (X = gx, Y = gy, Z = gz)
returns 1 iff xy = z mod p. We now describe our new assumptions in more details.
Formal definitions will be given in Section 3.

Multi-User GapCDH With Corruptions. For n ≥ 2, the n-user GapCDH problem
with Corruptions (n-CorrGapCDH) is a natural generalization of GapCDH to the n-user
setting. The adversary is given the n-tuple (ga1 , . . . , gan) and is allowed to corrupt
any user i to obtain its secret ai. In order to win, it must output any of the n(n− 1)
possible Diffie-Hellman keys gaiaj for two non-corrupted users i 6= j. Even though the
two assumptions are asymptotically equivalent, they are quantitatively different: Due to
the corruptions, one can only prove the non-tight bound εCorrGapCDH ≤ O(n2) · εGapCDH.

For n1 ≤ n, we also consider an Asymmetric version of this assumption called
(n, n1)-CorrAGapCDH. It is asymmetric in the sense that n1 splits the set of users [n]
in two disjoint sets [n1] and [n1 + 1, n], where only the first n1 users can be corrupted.
The adversary has to output any of the Diffie-Hellman keys gaiaj for two non-corrupted
users i ∈ [n1] and j ∈ [n1 + 1, n]. Note that CorrGapCDH tightly implies CorrAGapCDH.
However, the fact that the challenge set is split asymmetrically allows us to give a
tighter relation to GapCDH. In particular, we prove that εCorrAGapCDH ≤ O(n1) · εGapCDH.

Multi-User Challenge-Response GapCDH With Corruptions. The (n,QCh)-
CorrCRGapCDH problem is a generalization of n-CorrGapCDH, where the adversary is
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additionally given QCh many challenge-response pairs (Rk, hk), for adaptively chosen
Rk ∈ G. To win, the adversary must output any of the n(n − 1)QCh possible Diffie-
Hellman Challenge-Response keys gaiajhk ·Rajk for two non-corrupted users i 6= j.

Another interpretation of the CorrCRGapCDH problem stems from canonical (three-
round) identification schemes (a.k.a. Σ protocols) with a designated Verifier, where the
Prover (holding secret key aj) sends commitment Rk, the Verifier (holding secret key
ai) responds with a random challenge hk, and finally the Prover sends the response
C = gaiajhk · Rajk . In this setting, the CorrCRGapCDH problem can be seen as an
n-user version with corruptions of Parallel IMPersonification against Key-Only Attack
(PIMP-KOA) [KMP16].

The interpretation in the context of identification schemes gives a hint that the
(n,QCh)-CorrCRGapCDH problem is again of qualitatively different nature than GapCDH
and n-CorrGapCDH. Using techniques from [KMP16], one can prove that GapCDH and
(n,QCh)-CorrCRGapCDH are asymptotically equivalent. However, since the proof involves
the Forking Lemma [PS00], the resulting bound εCorrCRGapCDH ≤ QChn

2 ·
√
εGapCDH is

highly non-tight.
Generic Hardness. In the generic group model (GGM) [Sho97], the running time of
an adversary is captured by the number of queries to a group operation oracle. Ignoring
constants, the advantages of an adversary making QOp group operations to a generic
group of order p are upper bounded by

εCorrCRGapCDH ≤ (QOp + n)2

p
+ n2QCh

p
(1)

εCorrGapCDH ≤ (QOp + n)2

p
. (2)

We note that εCorrGapCDH is the same as the generic hardness of the standard discrete
logarithm (DL) problem in [Sho97]. The generic hardness of CorrAGapCDH follows from
that of CorrGapCDH.

1.3 Concrete Security of AKE Protocols

We will now state the concrete security bounds of the AKE protocols in the eCK model
which depend on the number of users N ≥ 2, the total number of sessions S ≥ 0, the
total number of test queries T ≥ 0, and the number of random oracle queries QRO.
Concrete Bounds from GapCDH. We summarize the previously known and our
security loss of NAXOS, X3DH−, and HMQV relative to GapCDH in Figure 2. For
HMQV [Kra05], we could not identify a concrete security bound in the literature so we
had to estimate it from [Kra05, BCLS15] and the one of CMQV [Ust08]. The original
bounds of NAXOS and HMQV are proven in a model that allows only a single test query.
The bounds from Figure 2 are derived using a hybrid argument inducing a multiplicative
factor of T , the number of test queries.

We stress that the multiplicative factor T seems to be unavoidable using the original
proof strategies of NAXOS [LLM07] and HMQV [Kra05]. Even using the random self
reducibility of CDH, these strategies still need to guess T possible test sessions out of
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Old GGM Bounds New GGM Bounds
εAKE(toff, ton) Bit security εAKE(toff, ton) Bit security

NAXOS t3ont
2
off

p 32 t2off
p 128

X3DH− tont
2
off

p 96 t2off
p 128

HMQV t3ont
2
off√
p 0 t2off+t

2
ontoff
p 128

Figure 3: Security bounds in the GGM, where toff = QOp +QRO counts the number
of offline queries and ton = N + S + T counts the number of online queries. The “Bit
security” columns refer to the bit security supported by the respective bounds over
generic groups of order p ≈ 2256 and assuming ton ≈ 232 and toff . 2128.

S many sessions in total, resulting in an exponential loss of
(
S
T

)
. Thus, the best way

is to apply a hybrid argument and replace the keys one by one for each test query,
which results in the security loss T . Our new assumptions resolve this issue and allow
us to get rid of the factor T . In particular, we can replace the session keys of all T test
sessions at once as the reduction can embed challenge instances in all sessions and then
adaptively choose which instance to solve, while allowing corruptions from adversaries.

We believe that improving the bound by the factor T is relevant in practice. When
combining session keys with a symmetric primitive, security should still hold for many
sessions, thus T can be about 230, e.g. in modern messaging applications.

Concrete Bounds in the GGM. The main novelty of our multi-user CDH problems
is that they allow us to give optimal security bounds for NAXOS, X3DH−, and HMQV in
the GGM. Our bounds in the eCK security model depend on the number of honest users
N , sessions S, test sessions T , random oracle queries QRO, and generic group operations
QOp made by the adversary. Since N , S, and T correspond to “online queries”, we will
merge them into one single value ton = N + S + T , the time adversary A spends on
online queries. Similarly, toff = QRO +QOp counts the time that adversary A spends
on “offline queries”. (The reason is that offline queries are considerably less expensive
than online queries, see below.) Figure 3 summarizes the security bounds in the GGM
expressed as functions in ton, toff.

We now explain the bounds for NAXOS in more detail. According to Figure 2, its
security is tightly implied by (N + S)-CorrGapCDH. This means that in practice one
can just pick a group G where the (N + S)-CorrGapCDH problem is hard (say, with
128-bit security) and implementing NAXOS in G directly gives us the same level of
security (namely, 128-bit security) without increasing the group size. Applying (2)
and using that QOp ≥ (N + S), the quantitative hardness of NAXOS in the GGM is
(QOp+N+S)2

/p = t2off/p. This is optimal in the sense that it matches the generic bounds
on the best attack on NAXOS (which computes one DL and breaks the scheme). From
previously known reductions [LLM07], one can only obtain the weaker GGM bound
T (N+S)2(QOp+N+S)2

/p = t3ont
2
off/p. As for a concrete comparison, we compute the bit

security offered by NAXOS when implemented over prime-order elliptic curves with
log(p) = 256. According to [CKMS16], a scheme offers a security level of κ bits if
ε/(ton+toff) ≤ 2−κ for all adversaries running in time ton + toff where 1 ≤ ton + toff ≤ 2κ.
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A simple computation shows that our new bounds offer κ = 128 bits security as long as
ton + toff ≤ 2128. Using the bound from previously known proofs, one obtains a provable
security guarantee of 128− 3 log2(ton) bits. Using the conservative ton = 232 [CCG+19],
this makes only 32 bits. Since (N + S,N)-CorrAGapCDH implies (N + S)-CorrGapCDH,
the computations for X3DH− are similar. The old GGM bound is obtained from the
bound in [CCG+19] which has a security loss linear in N .

The same computation shows that the quantitative hardness of HMQV in the GGM is
(QOp+N+S)2

/p + (N+S)2(QRO+1)/p = (t2off+t
2
ontoff)/p. Hence HMQV over prime-order elliptic

curves of size log(p) = 256 offers a security of 128 bits as long as ton ≤ 264. In contrast,
from previously known proofs one can only obtain t3ont

2
off/√p which means that we are

left with −96 bits of security (meaning zero). If, to guarantee 128 bits of security, group
sizes were chosen according to this bound, they would be quite large, and the scheme
correspondingly slow.

1.4 Discussion and Prior Work

We showed that for HMQV, X3DH−, and NAXOS one can pay the price of stronger
cryptographic assumptions for the benefit of getting tighter bounds. One might argue
that our new assumptions partly “abstract away” the looseness of prior proofs and
moreover come very close to a tautology of the AKE’s security. While there is certainly
some truth to the first statement, we would like to stress that our AKE security proofs
are still rather complex and non-trivially relate the AKE experiment involving multiple
oracles to the much simpler multi-user CDH experiment. Our new assumptions are purely
algebraic and do not involve any hash function. Hence, they precisely characterize the
“algebraic complexity” of the AKEs’ security which certainly improves our understanding
of their security. As a matter of fact, as a side result our approach also led to improved
security reductions from the standard GapCDH assumption. Furthermore, our new
generic bounds are the only known formal argument supporting the security of HMQV
in 256-bit groups, cf. Figure 3.

Another point of criticism might be that our new assumptions are non-falsifiable. We
remark that the full Gap oracle (i.e., oracle Ddh in Figure 4) is the only reason why our
new assumptions (such as CorrGapCDH) are non-falsifiable. Previous (non-tight) proofs
for HMQV and NAXOS also relied on the non-falsifiable GapCDH, whereas X3DH− was
proved from the weaker and falsifiable Strong CDH assumption, where the first input of
the Ddh oracle is fixed. For simplicity we decided to analyze all protocols with respect
to a gap assumption. But we would like to stress that for NAXOS and X3DH− we
actually do not need the full power of the gap oracle in our proofs (see our comment in
the beginning to Section 5). This way we can prove the security of NAXOS and X3DH−
from falsifiable assumptions. Proving HMQV with respect to a falsifiable assumption
remains an interesting open problem.

We analyzed the tightness of existing AKE protocols of practical relevance. The works
[KMP16, BD20, FPS20] took a similar approach in the context of the Schnorr (blind)
signature scheme. For example, [KMP16] proved that UF-CMA security of Schnorr
signatures in the multi-user setting is tightly implied by the interactive QRO-IDLOG
assumption which in turn has optimal bounds in the GGM. In a different line of work,
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new AKE protocols with a tight security reduction from standard assumptions were
created from scratch, for example [BHJ+15, CCG+19, JKRS21]. All those schemes are
considerably less efficient than NAXOS, X3DH−, and HMQV.

Open Problems. We note that there are several variants of HMQV and NAXOS, such
as [Ust08, PW11, Ust09, YZ13]. We are optimistic that our analysis will carry over in
a straightforward manner but leave the concrete analysis as an open problem. While
we only use our assumptions to analyze two-message DH-based AKE protocols in this
paper, we believe that our framework can be extended to analyze the Noise framework
[Per17, DRS20] in combination of suitable symmetric primitives. Another interesting
open problem is to improve the generic bound for HMQV to t2off/p, or to show an attack
matching our slightly worse bound from Figure 3.

2 Preliminaries

Notation. For integers N,M ∈ N+, we define [N,M ] := {N,N + 1, . . . ,M} (which is
the empty set for M < N) and [N ] := [1, N ]. For an adversary A, we write a← A(b)
as the output of A on input b. To express A’s random tape ρ explicitly, we write
a := A(b; ρ). In this case, A’s execution is deterministic. The notation JBK, where B is
a boolean statement, refers to a bit that is 1 if the statement is true and 0 otherwise.

Games. We use code-based games in this paper, following [BR06]. In every game,
Boolean values are all initialized to false, numerical values to 0, sets to ∅, strings to
undefined ⊥. For the empty string, we use a special symbol ε. A procedure terminates
once it has returned an output.

Idealized Models. In the Generic Group Model (GGM) [Sho97, Mau05], group
operations in group G can only be computed via an oracle Op (Op stands for operation)
provided by the GGM, and adversaries only receive unique handles for the corresponding
group elements. The GGM internally identifies elements in G with elements in Zp, since
(G, ·) of order p is isomorphic to (Zp,+). Moreover, the GGM maintains an internal
list that keeps track of all elements that have been issued. In this paper, our GGM
proofs follow the work of Kiltz et al. [KMP16] which essentially uses the Maurer model
[Mau05]. In the Random Oracle Model (ROM) [BR93], a hash function is modeled as
a perfectly random function. That is, an adversary is only given access to the hash
functions via an oracle H which (consistently) outputs uniform random elements in the
hash function’s range.

The running time of an adversary A in the GGM and ROM counts the number of
calls to the Op and H oracles. We define such calls to the hash and group operation
oracles as offline queries, since these operations can in practice be performed by an
adversary offline, without any interaction with a server. In contrast, we define all queries
that require interaction with a server as online queries. (For example, queries to a
signing oracle in a digital signature scheme.) Adversary A’s offline (or online) running
time toff (or ton) is the time A spends on offline (or online) queries.
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Bit Security. According to [CKMS16], a scheme has κ-bit security if ε/(ton+toff) ≤ 2−κ
for all adversaries that run in time ton + toff where 1 ≤ ton + toff ≤ 2κ.

3 Multi-User CDH Problems
We formally define our new multi-user CDH problems CorrGapCDH and
CorrCRGapCDH, discuss their relation to the standard CDH problem and analyze
their generic bounds.

For the rest of this section, we fix parameters par = (p, g,G) that describe a group
G of prime order p = |G| and a generator g of G. For g,A ∈ G, we define DLg(A) as
the unique a ∈ Zp satisfying ga = A.
Standard CDH. We first recall the standard CDH problem which is to compute
ga1a2 given ga1 and ga2 for randomly chosen a1, a2

$← Zp. A popular variant for
proving security of encryption and key exchange protocols is the Gap CDH GapCDH
[OP01, ABR01] problem. In GapCDH, the adversary can make queries to a gap oracle
Ddh(A, Y, Z) returning the Boolean value JY DLg(A) = ZK.
Multi-User GapCDH.We now consider natural generalizations of GapCDH to a setting
with n ≥ 2 users where the adversary is given the n-tuple (ga1 , . . . , gan) and in order
to win, it must output any of the n(n − 1) possible CDH tuples in the winning
set Win = {gaiaj | i 6= j}. Formally, to n ≥ 2 and QDdh ≥ 0, we associate game
GapCDHn,QDdh

of Figure 4 and define the advantage function of A as AdvGapCDH
n,QDdh

(A) :=
Pr[GapCDHAn,QDdh

⇒ 1]. We let n-GapCDH be the problem with parameters n ≥ 2 such
that GapCDH = 2-GapCDH. (To simplify notation we ignore the value QDdh when
naming assumptions.) By a standard re-randomization argument [NR97] over the users,
one can show that n-GapCDH is tightly equivalent to GapCDH = 2-GapCDH .
Multi-User GapCDH With Corruption. We now generalize the n-GapCDH prob-
lem to allow for user corruptions. Corruptions are modeled by oracle Corrn(i ∈ [n])
which returns ai, the discrete logarithm of Ai = gai . To win, the adversary must output
one of the Diffie-Hellman keys gaiaj for two distinct, non-corrupted users i and j. More
formally, to n ≥ 2, and QDdh ≥ 0, we associate game CorrGapCDHn,QDdh

of Figure 4 and
define the advantage function of A as AdvCorrGapCDH

n,QDdh
(A) := Pr[CorrGapCDHAn,QDdh

⇒ 1].
We let n-CorrGapCDH be the problem with parameters n ≥ 2 and QDdh. We note
that due to the corruption oracle a re-randomization argument as for the case without
corruptions can no longer be applied and therefore we can not prove tight equivalence
between GapCDH and n-CorrGapCDH.
Multi-User Asymmetric GapCDH With Corruption. This problem is like the
n-CorrGapCDH problem, where the corruption oracle Corrn1(i ∈ [n1]) is restricted to
users i ∈ [n1], where parameter 0 ≤ n1 ≤ n splits interval [n] in [n1] and [n1 + 1, n]. To
win, the adversary has to return one of the≤ n1(n−n1) asymmetric Diffie-Hellman values
A
aj
i for non-corrupted users i ∈ [n1] and j ∈ [n1 + 1, n]. More formally, to n ≥ 2, 0 ≤

n1 ≤ n, and QDdh ≥ 0, we associate game CorrAGapCDHn,n1,QDdh
of Figure 4 and define

the advantage function of A as AdvCorrAGapCDH
n,n1,QDdh

(A) := Pr[CorrAGapCDHAn,n1,QDdh
⇒ 1].

We let (n, n1)-CorrAGapCDH be the problem with parameters n ≥ 2 and 0 ≤ n1 ≤ n.
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GAME G
00 for i ∈ [n]
01 ai

$← Zp; Ai := gai

02 C ← AO(A1, · · · , An)
03 return JC ∈WinK

Win =


{(Aaji | (i, j) ∈ [n]2 ∧ (i 6= j)} : G = GapCDHn,QDdh

{(Aaji | (i, j) ∈ ([n] \ LA)2 ∧ (i 6= j)} : G = CorrGapCDHn,QDdh

{(Aaji | (i, j) ∈ ([n1] \ LA)× [n1 + 1, n]} : G = CorrAGapCDHn,n1,QDdh

{(Ahki ·Rk)aj | (i, j, k) ∈ ([n] \ LA)2 × [QCh] ∧ (i 6= j)} : G = CorrCRGapCDHn,QCh,QDdh

O =


Ddh(·, ·, ·) : G = GapCDHn,QDdh

Ddh(·, ·, ·),Corrn(·) : G = CorrGapCDHn,QDdh

Ddh(·, ·, ·),Corrn1 (·) : G = CorrAGapCDHn,n1,QDdh

Ddh(·, ·, ·),Corrn(·),Ch(·) : G = CorrCRGapCDHn,QCh,QDdh

Ddh(X`, Y`, Z`) �`-th query (` ∈ [QDdh])
04 return JZ` = Y

DLg(X`)
` K

Ch(Rk ∈ G) �k-th query (k ∈ [QCh])
05 return hk

$← Zp

Corrn′(i ∈ [n′])
06 LA := LA ∪ {i}
07 return ai

Figure 4: Game G ∈ {GapCDHn,QDdh
,CorrGapCDHn,QDdh

,CorrAGapCDHn,n1,QDdh
,

CorrCRGapCDHn,QCh,QDdh
} for defining our Multi-User CDH problems.

Multi-User Challenge-Response GapCDH With Corruption. Our final prob-
lem is a generalization of the n-CorrGapCDH problem. The adversary is given access to
a challenge oracle Ch(Rk ∈ G) (k ∈ [QCh]) which returns a response hk $← Zp. In the
winning condition, the adversary is required to output any of the at most n(n− 1)QCh

elements of the winning set Win = {(Ahki ·Rk)aj | i 6= j uncorrupted}. Furthermore, we
will give the adversary access to the full gap oracleDdh. More formally, to integers n ≥ 2,
QCh ≥ 0, and QDdh ≥ 0, we associate game CorrCRGapCDHn,QCh,QDdh

of Figure 4 and
define the advantage function AdvCorrCRGapCDH

n,QCh,QDdh
(A) := Pr[CorrCRGapCDHAn,QCh,QDdh

⇒ 1].
We let (n,QCh)-CorrCRGapCDH be the problem with parameters n ≥ 2 and QCh.
Relations. Figure 5 summarizes the relations between the multi-user CDH problems.
We only state the important ones for our analysis here, all other formal statement and
proofs are postponed to Appendix A.

Theorem 1 (GapCDH non-tightly−−−−−−−→ (n,QCh)-CorrCRGapCDH). For any adversary A
against (n,QCh)-CorrCRGapCDH, there exist an adversary B against GapCDH such that

AdvCorrCRGapCDH
n,QCh,QDdh

(A) ≤ QCh · n2
(√

AdvGapCDH
QDdh

(B) + 1
p

)
, and T(B) ≈ 2T(A), (3)

where T(A) and T(B) are the running times of adversaries A and B, respectively.

The proof of Theorem 1 and Lemmas 6 to 8 referred to in Figure 5 can be found in
Appendix A.1. Proofs of the following lemmas can be found in Appendix A.2.

Lemma 1 ((n, 1)-CorrCRGapCDH −→ n-CorrGapCDH). For any adversary A against
n-CorrGapCDH, there exists an adversary B against (n, 1)-CorrCRGapCDH with

AdvCorrGapCDH
n,QDdh

(A) ≤ AdvCorrCRGapCDH
n,1,QDdh

(B).
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(n, n1)-CorrAGapCDH n-GapCDH

GapCDH n-CorrGapCDH

(2, 1)-CorrCRGapCDH (n, 1)-CorrCRGapCDH (n,QCh)-CorrCRGapCDH true

n1 (L. 3)
n2 (L. 2)

n2 (L. 7)
rew. (L. 6) (L. 1)

QCh (L. 8) GGM (Th. 2)

Figure 5: Standard model relations between the standard problem GapCDH
(CDH with full gap oracle) and our new problems n-GapCDH, n-CorrGapCDH, and
(n,QCh)-CorrCRGapCDH. Red arrows denote non-tight implications with tightness loss
as indicated; Green arrows denote tight implications; The black arrow denotes an
unconditional statement in the GGM. Formal statements and proofs (unless trivial) are
referenced.

Lemma 2 (GapCDH n2

−→ n-CorrGapCDH). For any adversary A against
n-CorrGapCDH, there exists an adversary B against GapCDH with

AdvCorrGapCDH
n,QDdh

(A) ≤ n2 ·AdvGapCDH
QDdh

(B).

Lemma 3 (GapCDH n1−→ (n, n1)-CorrAGapCDH). For any adversary A against (n,
n1)-CorrAGapCDH, there exists an adversary B against GapCDH with

AdvCorrAGapCDH
n,n1,QDdh

(A) ≤ n1 ·AdvGapCDH
QDdh

(B).

Theorem 2 (Generic Hardness of CorrCRGapCDH). For an adversary A against
(n,QCh)-CorrCRGapCDH in the GGM that makes at most QOp queries to the group
oracle Op, n′ queries to the corruption oracle Corr, QDdh queries to the gap oracle
Ddh, and QCh queries to the challenge oracle Ch, A’s advantage is

AdvCorrCRGapCDH
n,QCh,QDdh,GGM(A) ≤ (QOp + n+ 1)2

2p + 2QDdh

p
+ (n− n′)2QCh

2p + QCh(n− n′)
p

.

We analyze the hardness of (n,QCh)-CorrCRGapCDH in the generic group model
(GGM) [Sho97, Mau05]. In particular, our GGM proofs follow the work of Kiltz et al.
[KMP16] which essentially uses the Maurer model [Mau05]. Theorem 2 presents the
hardness of (n,QCh)-CorrCRGapCDH in the GGM. Before proving it, we recall a useful
lemma.

Lemma 4 (Schwartz–Zippel Lemma). Let f(x1, .., xn) be a non-zero multivariate
polynomial of degree d ≥ 0 over a field F. Let S be a finite subset of F. Let α1, . . . , αn
be chosen uniformly at random from S. Then

Pr[f(α1, . . . , αn) = 0] ≤ d

|S|
.

Proof (of Theorem 2). We construct a simulator B who interacts and plays game
CorrCRGapCDHn,QCh,QDdh

with A in the GGM. Group operation, corruption and Ddh
oracle queries are simulated as in Figure 6.
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B �simulating in the GGM
00 LE := {(x0 := 1, Px0 := 1)} �set of polynomials
01 for i ∈ [n]
02 αi

$← Zp; LE := LE ∪ {(xi, Pxi := i+ 1)}
03 ~x := (x1, . . . , xn)
04 ~α := (α1, . . . , αn)
05 cnt := n+ 1 �size of LE
06 C ← AO(Px0 , . . . , Pxn)
07 if C /∈ [cnt]
08 return 0
09 fetch (z∗(~x), C) ∈ LE
10 if ∃(f(~x), P ), (g(~x), P ′) ∈ LE
11 and f(~x) 6= g(~x) and f(~α) = g(~α)
12 BADG := 1; Abort
13 if z∗(~α) = (αi∗hk + rk(~α))αj∗
14 if (i∗, j∗, k) ∈ ([n] \ LA)2 × [QCh] and i∗ 6= j∗

15 return 1
16 return 0

Ddh(Pi, Pj , Pk)
17 if (Pi, Pj , Pk) /∈ [cnt]3
18 return ⊥
19 fetch (a(~x), Pi), (b(~x), Pj), (c(~x), Pk) ∈ LE
20 if c(~x) = a(~x) · b(~x)
21 return 1
22 if c(~α) = a(~α) · b(~α)
23 BADDdh := 1; Abort
24 return 0

Corr(i)
25 if i /∈ [n]
26 return ⊥
27 LA := LA ∪ {i}
28 return αi

Ch(Rk) �k-th query (k ∈ [QCh])
29 if @(rk(~x), Rk) ∈ LE
30 return ⊥
31 hk

$← Zp
32 return hk

Op(P, P ′)
33 if (P, P ′) /∈ [cnt]2
34 return ⊥
35 fetch (a(~x), P ), (b(~x), P ′) ∈ LE
36 z(~x) := a(~x) + b(~x)
37 if ∃(z(~x), Pz(~x)) ∈ LE
38 return Pz(~x)
39 cnt ++
40 Pz(~x) := cnt
41 LE := LE ∪ {(z(~x), Pz(~x))}
42 return Pz(~x)

Figure 6: B simulates CorrCRGapCDHn,QCh,QDdh
in the Generic Group Model (GGM)

and interacts with A. A has access to oracles O := {Ddh,Corr,Ch,Op}.

Our overall idea is to simulate the CorrCRGapCDHn,QCh,QDdh
game in a symbolic

way using degree-1 polynomials. More precisely, during the simulation our simulator
keeps an internal list LE with entries of the form (z(~x), Pz(~x)) where z is a degree-1
polynomial and Pz(~x) ∈ N identifies which entry it is. After A outputs a forgery, our
simulator assigns variables (x1, . . . , xn) with (α1, . . . , αn) $← Znp .

Now we note that the simulator perfectly simulates the CorrCRGapCDHn,QCh,QDdh
in

the GGM if both BADDdh and BADG are equal to 0. To bound the probability that
one of the bad events happens, we use Lemma 4:

For eachDdh query, Pr~α[c(~x) 6= a(~x)·b(~x) and c(~α) = a(~α)·b(~α)] ≤ 2/p, since c(~x)−
a(~x) · b(~x) is a non-zero polynomial of degree two. By the union bound, Pr[BADDdh] ≤
2QDdh/p, where QDdh is A’s maximum number of Ddh queries.

If BADG happens, there are two distinct degree-1 polynomials zi(~x) and zj(~x) in
LE that collide on input ~α $← Znp . By the union bound, we get

Pr[BADG] := Pr
~α

[∃(i, j) ∈ [cnt]2 : zi(~x) 6= zj(~x) and zi(~α) = zj(~α)]

≤
(
QOp + n+ 1

2

)
· 1
p
≤ (QOp + n+ 1)2

2p ,
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where the 1/p factor comes from Lemma 4, and the fact that all our polynomials have
degree one.

Let n′ := |LA| be the size of LA.
The advantage function of A in the GGM can be bounded as

AdvCorrCRGapCDH
n,QCh,QDdh,GGM(A) ≤ Pr[BADG] + Pr[BADDdh]

+ Pr
~α

[∃(i∗, j∗ 6= i∗, k) ∈ ([n] \ LA)2 × [QCh] : z∗(~α) = (αi∗hk + rk(~α))αj∗ ]

≤ (QOp + n+ 1)2

2p + 2QDdh

p
+ (n− n′)2QCh

2p + (n− n′)QCh

p
.

To bound the third probability statement above, we use the following general inequality
for events A and B:

Pr[A] = Pr[A | B] · Pr[B] + Pr[A ∧ ¬B] · Pr[¬B] ≤ Pr[A | B] + Pr[¬B].

This allows us to split the statement into two terms, for which we can apply Lemma 4
to both and get

Pr
~α

[∃(i∗, j∗ 6= i∗, k) ∈ ([n] \ LA)2 × [QCh] : z∗(~α) = (αi∗hk + rk(~α))αj∗ ]

≤Pr
~α

[∃(i∗, j∗, k) : z∗(~α) = (αi∗hk + rk(~α))αj∗ | αi∗hk + rk(~α) 6= 0]

+ Pr
~α

[∃(i∗, k) : αi∗hk + rk(~α) = 0]

≤
(
n− n′

2

)
·
(
QCh

1

)
· 1
p

+
(
n− n′

1

)
·
(
QCh

1

)
· 1
p

=(n− n′)2QCh

2p + (n− n′)QCh

p
.

The following corollary is obtained by applying Lemma 1 to Theorem 2.

Corollary 1 (Generic Hardness of CorrGapCDH). For an adversary A against n-CorrGapCDH
in the GGM that makes at most QOp queries to the group oracle Op, n′ queries to the
corruption oracle Corr, and QDdh queries to the gap oracle Ddh, A’s advantage is

AdvCorrGapCDH
n,QDdh,GGM(A) ≤ (QOp + n+ 1)2

2p + 2QDdh

p
+ (n− n′)2

2p + n− n′

p
.

4 Two-Message Authenticated Key Exchange
A two-message key exchange protocol AKE = (GenAKE, InitI, InitR,DerR,DerI) consists
of five algorithms which are executed interactively by two parties as shown in Figure 7.
We denote the party which initiates the session by Pi and the party which responds to
the session by Pr. The key generation algorithm GenAKE outputs a key pair (pk, sk) for
one party. The initialization algorithms InitI and InitR input the long-term secret key of
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the party running the algorithm and the corresponding peer’s long-term public key and
output a message I or R and a state stI or stR. The derivation algorithms DerI and DerR
take as input the corresponding long-term secret key, the peer’s public key, a message
I or R and the state. It computes a session key K. Note that the terms initiator and
responder are used to identify the parties, but the notation does not enforce an order of
execution. In particular, the protocols we are looking at here allow that messages can
be sent simultaneously and both parties may store a state.

Party Pi (pki, ski) Party Pr (pkr, skr)

(I, stI)← InitI(ski, pkr) (R, stR)← InitR(skr, pki)

K := DerI(ski, pkr, R, stI) K := DerR(skr, pki, I, stR)

I

R
stI stR

Figure 7: Running a key exchange protocol between two parties.

We give a security game written in pseudocode in the style of [JKRS21]. We define
two models for implicitly authenticated protocols achieving weak forward secrecy, where
one is without and one is with state reveals. The latter models the same security as
the eCK model [LLM07], extended by multiple test queries with respect to the same
random bit b. The games IND-wFS and IND-wFS-St are given in Figures 8 and 9.
Execution Environment. We consider N parties P1, ...,PN with long-term key pairs
(pkn, skn), n ∈ [N ]. Each session between two parties has a unique identification number
sID and variables which are defined relative to sID:
– init[sID] ∈ [N ] denotes the initiator of the session.
– resp[sID] ∈ [N ] denotes the responder of the session.
– type[sID] ∈ {“In”, “Re”} denotes the session’s view, i. e., whether the initiator or
the responder computes the session key.

– I[sID] denotes the message that was computed by the initiator.
– R[sID] denotes the message that was computed by the responder.
– state[sID] denotes the (secret) state information, i. e., ephemeral secret keys.
– sKey[sID] denotes the session key.

To establish a session between two parties, the adversary is given access to oracles
SessionI and SessionR, where the first one starts a session of type “In” and the second
one of type “Re”. In order to complete the session, the oracle DerI or DerR has to be
queried. At any time, the adversary can register an adversarially controlled party by
providing a long-term public key via the oracle RegisterLTK. The adversary does not
need to know the corresponding secret key, but the party will be corrupted by definition.
Note that oracles SessionI and SessionR cannot take an adversarially controlled party
as owner. Furthermore, the adversary has access to oracles Corrupt and Reveal to
obtain secret information. In game IND-wFS-St, the adversary has additional access to
Rev-State. We use the following boolean values to keep track of which queries the
adversary made:
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GAMES IND-wFS and IND-wFS-St
00 cntP := N
01 for n ∈ [N ]
02 (pkn, skn)← GenAKE
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkN )
05 for sID∗ ∈ S
06 if Fresh(sID∗) = false
07 return b �session not fresh
08 if Valid(sID∗) = false
09 return b �no valid attack
10 return Jb = b′K

SessionR((i, r) ∈ [cntP]× [N ])
11 cntS ++
12 sID := cntS
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 (R, st)← InitR(skr, pki)
16 (R[sID], state[sID]) := (R, st)
17 return (sID, R)

DerR(sID ∈ [cntS], I)
18 if sKey[sID] 6= ⊥ or type[sID] 6= “Re”
19 return ⊥ �no re-use
20 (i, r) := (init[sID], resp[sID])
21 st := state[sID]
22 K := DerR(skr, pki, I, st)
23 (I[sID], sKey[sID]) := (I,K)
24 return ε

Rev-State(sID)
25 revState[sID] := true
26 return state[sID]

SessionI((i, r) ∈ [N ]× [cntP])
27 cntS ++
28 sID := cntS
29 (init[sID], resp[sID]) := (i, r)
30 type[sID] := “In”
31 (I, st)← InitI(ski, pkr)
32 (I[sID], state[sID]) := (I, st)
33 return (sID, I)

DerI(sID ∈ [cntS], R)
34 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
35 return ⊥ �no re-use
36 (i, r) := (init[sID], resp[sID])
37 st := state[sID]
38 K := DerI(ski, pkr, R, st)
39 (R[sID], sKey[sID]) := (R,K)
40 return ε

Reveal(sID)
41 revealed[sID] := true
42 return sKey[sID]

Corrupt(n ∈ [N ])
43 corrupted[n] := true
44 return skn

RegisterLTK(pk)
45 cntP++
46 pkcntP

:= pk
47 corrupted[cntP] := true
48 return cntP

Test(sID)
49 if sID ∈ S return ⊥ �already tested
50 if sKey[sID] = ⊥ return ⊥
51 S := S ∪ {sID}
52 K∗0 := sKey[sID]
53 K∗1

$← K
54 return K∗b

Figure 8: Games IND-wFS and IND-wFS-St for AKE. A has access to oracles
O := {SessionI,SessionR,DerI,DerR,Reveal,Corrupt,RegisterLTK,Test}.
In game IND-wFS-St, A has additionally access to oracle Rev-State. Helper pro-
cedures Fresh and Valid are defined in Figure 9. If there exists any test session which
is not both fresh and valid, the game will return the random bit b.

– corrupted[n] denotes whether the long-term secret key of party Pn was given to the
adversary.

– revealed[sID] denotes whether the session key was given to the adversary.
– revState[sID] denotes whether the state information of that session was given to
the adversary.
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Fresh(sID∗)
00 (i∗, r∗) := (init[sID∗], resp[sID∗])
01 M(sID∗) := {sID | (init[sID], resp[sID]) = (i∗, r∗) ∧ (I[sID], R[sID]) =

(I[sID∗], R[sID∗]) ∧ type[sID] 6= type[sID∗]} �matching sessions
02 if revealed[sID∗] or (∃sID ∈M(sID∗) : revealed[sID] = true)
03 return false �A trivially learned the test session’s key
04 if ∃sID ∈M(sID∗) s. t. sID ∈ S
05 return false �A also tested a matching session
06 return true

Valid(sID∗)
07 (i∗, r∗) := (init[sID∗], resp[sID∗])
08 M(sID∗) := {sID | (init[sID], resp[sID]) = (i∗, r∗) ∧ (I[sID], R[sID]) =

(I[sID∗], R[sID∗]) ∧ type[sID] 6= type[sID∗]} �matching sessions
09 for attack ∈ Table 2 Table 1
10 if attack = true return true
11 return false

Figure 9: Helper procedures Fresh and Valid for games IND-wFS and IND-wFS-St
defined in Figure 10. Procedure Fresh checks if the adversary performed some trivial
attack. In procedure Valid, each attack is evaluated by the set of variables shown
in Table 1 (IND-wFS-St, excluding trivial attacks) or Table 2 (IND-wFS) and checks
if an allowed attack was performed. If the values of the variables are set as in the
corresponding row, the attack was performed, i. e., attack = true, and thus the session
is valid.

The adversary can forward messages between sessions or modify them. By that, we can
define the relationship between two sessions:
– Matching Session: Two sessions sID and sID′ match if the same parties are
involved (init[sID] = init[sID′] and resp[sID] = resp[sID′]), the messages sent and
received are the same (I[sID] = I[sID′] and R[sID] = R[sID′]) and they are of
different types (type[sID] 6= type[sID′]).

As we look at implicitly authenticated protocols that consist only of group elements,
they are not vulnerable to no-match attacks described in [LS17].

Finally, the adversary is given access to oracle Test, which can be queried multiple
times and which will return either the session key of the specified session or a uniformly
random key. We use one bit b for all test queries. We store test sessions in a set S. In
general, the adversary can disclose the complete interaction between two parties by
querying the long-term secret keys, the state information and the session key. However,
for each test session, we require that the adversary does not issue queries such that the
session key can be trivially computed. We define the properties of freshness and validity
which all test sessions have to satisfy:
– Freshness: A (test) session is called fresh if the session key was not revealed.

Furthermore, if there exists a matching session, we require that this session’s key is
not revealed and that this session is not also a test session.

– Validity: A (test) session is called valid if it is fresh and the adversary performed
any attack which is defined in the security model. We capture this with attack tables
(cf. Tables 1 and 2).
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0a. multiple matching sessions – – – – – > 1
*0b. trivial attack – – – – – –
1.+2. (long-term, long-term) – – – F F 1
3.+4. (state, state) F F – – – 1
5. (long-term, state) – F “In” F – 1
6. (long-term, state) – F “Re” – F 1
7. (state, long-term) F – “In” – F 1
8. (state, long-term) F – “Re” F – 1
*9.+10.(long-term, long-term) – – – F n/a 0
11.+12.(state, state) F F – – n/a 0
13. (long-term, state) – F “In” F n/a 0
*14. (long-term, state) – F “Re” – n/a 0
*15. (state, long-term) F – “In” – n/a 0
16. (state, long-term) F – “Re” F n/a 0

Table 1: Table of possible attacks for adversaries against implicitly authenticated
two-message protocols with ephemeral state reveals. Trivial attacks are highlighted in
blue color (and additionally marked with an asterisk *) and thus are NOT valid in
our security definition. An attack is regarded as an AND conjunction of variables with
specified values as shown in the each line, where “–” means that this variable can take
arbitrary value. F means “false” and “n/a” indicates that there is no state which can
be revealed as no matching session exists.

Attack Tables.We define validity of different attack strategies. All attacks are defined
using variables to indicate which queries the adversary may (not) make. We consider
three dimensions:
– whether the test session is on the initiator’s (type[sID∗] =“In”) or the responder’s
side (type[sID∗] =“Re”),

– all combinations of long-term secret key and state reveals (corrupted and revState
variables),

– whether the adversary acted passively (matching session) or actively (no matching
session).

This way, we capture all kind of combinations which are possible. From the 16 attacks
in total, four are trivial wins for the adversary and thus they are excluded:
– Attack (9.)+(10.): no implicitly authenticated key exchange can achieve full forward

security, so that we cannot reveal the long-term keys of both parties when there is
no matching session.
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0a. multiple matching sessions – – – > 1
1.+2. (long-term, long-term) – – – 1
13. (long-term, –) – F “In” 0
16. (–, long-term) F – “Re” 0

Table 2: Distilled table of attacks for adversaries against implicitly authenticated
two-message protocols without ephemeral state reveals. An attack is regarded as an
AND conjunction of variables with specified values as shown in the each line, where “–”
means that this variable can take arbitrary value and F means “false”.

– Attack (14.)+(15.): an adversary cannot reveal the long-term secret key of the test
session’s peer when there is no matching session, otherwise it can simply impersonate
the party.

Instead of black-listing these trivial attacks, our model captures what the adversary
is allowed to do. Hence, all non-trivial attacks are covered in our model, in particular
capturing weak forward secrecy (wFS), key compromise impersonation (KCI) and
maximal exposure (MEX) attacks. In more detail, wFS covers passive adversaries that
are allowed to corrupt both parties’ long-term keys after the session is completed (1.+2.).
KCI covers adversaries that will try to impersonate an honest party to a corrupted
party (13., 16.). MEX covers adversaries that have revealed any pair of long-term secret
key and state, except for both the long-term key and state of one party (5.-8., 11.+12.).

An attack is performed if the variables are set to the corresponding values in the table.
Table 1 is used for the IND-wFS-St security game, excluding trivial attacks highlighted
in blue. For completeness, we add the trivial attack in row (0b.), where an adversary
may query all secret information of a session. When not considering states, most of the
attacks are redundant. This way, we obtain the distilled table for the IND-wFS security
game given in Table 2.

However, if the protocol does not use appropriate randomness, it should not be
considered secure. Thus, if the adversary is able to create more than one matching
session to a test session, he may also run a trivial attack. We model this in row (0a.) of
Tables 1 and 2.
How to read the tables. As an example, we choose row (1.+2.) of Table 1. Then, if the
test session is an initiating session, the state was not revealed (revState[sID∗] = false)
and there is a matching session (|M(sID∗)| = 1) whose state was also not revealed,
this row will evaluate to true. In this scenario, the adversary is allowed to query both
long-term secret keys.
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For all test sessions, at least one attack has to evaluate to true. If not, the game
will return a random bit. The adversary wins if he does not make a trivial attack and
distinguishes the session keys from uniformly random keys which he obtains through
queries to the Test oracle.

When proving the security of a protocol, the success probability for each attack
strategy listed in the corresponding table will have to be analyzed, thus showing that
independently of which queries the adversary makes, he cannot distinguish the session
key from a uniformly random key.

In the protocols we look at, the state is defined as the ephemeral secret key (e.g., the
exponent of a group element) and thus equivalent with the randomness which is used
to compute the first message. Thus IND-wFS-St is exactly the same level of security as
captured by the eCK model, extended by multiple test queries to the same random bit
b.

Definition 1 (Key Indistinguishability of AKE). We define games IND-wFS and
IND-wFS-St as in Figures 8 and 9. The advantage of an adversary A against AKE in
these games is defined as

AdvIND-wFS
AKE (A) :=

∣∣∣2 Pr[IND-wFSA ⇒ 1]− 1
∣∣∣ and

AdvIND-wFS-St
AKE (A) :=

∣∣∣2 Pr[IND-wFS-StA ⇒ 1]− 1
∣∣∣ .

5 Protocols X3DH− and NAXOS

In this section, we want to analyze the X3DH− and NAXOS protocols (see Figure 1 in
the introduction). The protocols are defined relative to fixed parameters (p, g,G) that
describe a group G of prime order p = |G| and a generator g of G. G and H are hash
functions with G : {0, 1}λ × Zp → Zp and H : G7 → {0, 1}λ, where λ ≥ log(p).

We note that the original proof by Cohn-Gordon et al. [CCG+19] for X3DH− is
based on the strong Diffie Hellman Assumption, where the first input of the Ddh oracle
is fixed. Our proof strategy does not allow for that as we handle multiple attacks at a
time and avoid guessing. However, we want to stress that we do not require the full
power of the gap oracle, but could restrict ourselves to queries to Ddh, where the first
value is one of the input elements of the corresponding multi-user CDH problem. The
same applies to the proof of NAXOS.

Also note that X3DH− is insecure under ephemeral key reveals, so we prove security
in a weaker model as done in the original proof by [CCG+19].

Theorem 3 ((N + S, N)-CorrAGapCDH + S-GapCDH tight,ROM−−−−−−−→ X3DH− IND-wFS).
For any IND-wFS adversary A against X3DH− with N parties that establishes at most
S sessions and issues at most T queries to the Test oracle and at most QH queries to
the random oracle H, there exist an adversary B against (N +S, N)-CorrAGapCDH and
an adversary C against S-GapCDH with running times T(A) ≈ T(B) ≈ T(C) such that

AdvIND-wFS
X3DH− (A) ≤ AdvCorrAGapCDH

N+S,N, 3QH
(B) + AdvGapCDH

S,QH
(C) + (N + S)2

p
.
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The proof is given in Appendix B.

Theorem 4 ((N+S)-CorrGapCDHtight,ROM−−−−−−→ NAXOS IND-wFS-St). For any IND-wFS-St
adversary A against NAXOS with N parties that establishes at most S sessions and
issues at most T queries to the Test oracle, at most QG queries to random oracle
G and at most QH queries to random oracle H, there exists an adversary B against
(N + S)-CorrGapCDH with running time T(A) ≈ T(B) such that

AdvIND-wFS-St
NAXOS (A) ≤ AdvCorrGapCDH

N+S, 3QH
(B) + (N + S)2

p
+ S2

p
+ 2QGS

p
.

Proof. Let A be an adversary against IND-wFS-St security of NAXOS, where N is the
number of parties, S is the maximum number of sessions that A establishes and T is
the maximum number of test sessions. Consider the sequence of games in Figure 10.
Game G0. This is the original IND-wFS-St game. In this game, we implicitly assume that
all long-term keys, all messages output by SessionI and SessionR, and all ephemeral
secret keys are different. If such a collision happens, the game will abort. Using the
birthday paradox, the probability for that can be upper bounded by (N + S)2/(2p) for
N long-term key pairs and at most S messages, where exponents are chosen uniformly at
random from Zp, and S2/(2p) for ephemeral secret keys esk, which are chosen uniformly
at random from {0, 1}λ and λ ≥ log(p). This rules out attack (0a.), as there will be no
two sessions having the same transcript. We get

Pr[IND-wFS-StA ⇒ 1] ≤ Pr[GA0 ⇒ 1] + (N + S)2

2p + S2

2p . (4)

Game G1. In game G1, we define event BADState which occurs if the adversary makes
a query to random oracle G on a string esk ∈ {0, 1}λ which was used in any session, but
was not revealed to the adversary yet (line 53). This will become important in the next
game hop since we need to be able to reprogram G in case there is a Rev-State query
and Corrupt query for the party involved. If BADState happens, the game aborts.
The probability for this event to happen can be upper bounded by the number of oracle
queries and the number of sessions:∣∣Pr[GA1 ⇒ 1]− Pr[GA0 ⇒ 1]

∣∣ ≤ Pr[BADState] ≤ QG · S
p

.

Game G2. In game G2, the challenge oracle Test always outputs a uniformly random
key, independent from the bit b (line 31). We use that

∣∣Pr[GA2 ⇒ 1]− Pr[GA1 ⇒ 1]
∣∣ = 1

2
∣∣Pr[GA2 ⇒ 1 | b = 0] + Pr[GA2 ⇒ 1 | b = 1]

− Pr[GA1 ⇒ 1 | b = 0]− Pr[GA1 ⇒ 1 | b = 1]
∣∣

= 1
2
∣∣Pr[GA2 ⇒ 1 | b = 0]− Pr[GA1 ⇒ 1 | b = 0]

∣∣ , (5)

where the last equation holds because Pr[GA2 ⇒ 1 | b = 1] = Pr[GA1 ⇒ 1 | b = 1].
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GAMES G0, G1, G2

00 cntP := N
01 for n ∈ [N ]
02 an

$← Zp; An := gan

03 (pkn, skn) := (An, an)
04 b $← {0, 1}
05 b′ ← AO(pk1, · · · , pkN )
06 for sID∗ ∈ S
07 if Fresh(sID∗) = false return b
08 if Valid(sID∗) = false return b
09 return Jb = b′K

SessionR((i, r) ∈ [cntP]× [N ])
10 cntS ++
11 sID := cntS
12 (init[sID], resp[sID]) := (i, r)
13 type[sID] := “Re”
14 eskr

$← {0, 1}λ
15 y := G(eskr, ar); Y := gy

16 (R[sID], state[sID]) := (Y, eskr)
17 return (sID, Y )

DerR(sID ∈ [cntS], X)
18 if sKey[sID] 6= ⊥ or type[sID] 6= “Re”
19 return ⊥
20 (i, r) := (init[sID], resp[sID])
21 (Y, eskr) := (R[sID], state[sID])
22 y := G(eskr, ar)
23 ctxt := (Ai, Ar, X, Y )
24 K := H(ctxt, Ayi , X

ar , Xy)
25 (I[sID], sKey[sID]) := (X,K)
26 return ε

Test(sID)
27 if sID ∈ S return ⊥
28 if sKey[sID] = ⊥ return ⊥
29 S := S ∪ {sID}
30 K∗0 := sKey[sID]
31 K∗0

$← K
32 K∗1

$← K
33 return K∗b

SessionI((i, r) ∈ [N ]× [cntP])
34 cntS ++
35 sID := cntS
36 (init[sID], resp[sID]) := (i, r)
37 type[sID] := “In”
38 eski

$← {0, 1}λ
39 x := G(eski, ai); X := gx

40 (I[sID], state[sID]) := (X, eski)
41 return (sID, X)

DerI(sID ∈ [cntS], Y )
42 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
43 return ⊥
44 (i, r) := (init[sID], resp[sID])
45 (X, eski) := (I[sID], state[sID])
46 x := G(eski, ai)
47 ctxt := (Ai, Ar, X, Y )
48 K := H(ctxt, Y ai , Axr , Y x)
49 (R[sID], sKey[sID]) := (Y,K)
50 return ε

G(esk, a)
51 if G[esk, a] = z
52 return z

53 else if ∃sID s. t. esk = st[sID]
and revState[sID] = false

54 BADState := true
55 abort
56 else
57 z $← Zp
58 G[esk, a] := z
59 return z

H(Ai, Ar, X, Y, Z1, Z2, Z3)
60 if H[Ai, Ar, X, Y, Z1, Z2, Z3] = K
61 return K
62 else
63 K $← K
64 H[Ai, Ar, X, Y, Z1, Z2, Z3] := K
65 return K

Figure 10: Games G0-G2 for the proof of Theorem 4. A has access to
oracles O := {SessionI,SessionR,DerI,DerR,Rev-State,Reveal,Corrupt,
RegisterLTK,Test,G,H}, where RegisterLTK, Corrupt, Rev-State and
Reveal are defined as in the original IND-wFS-St game (Fig. 8). G0 implicitly as-
sumes that no long-term keys or messages generated by the experiment collide.

Due to the exclusion of collisions, a particular (test) session cannot be recreated, i.e.,
the adversary cannot create two sessions sID, sID′ of the same type that compute the
same session key. Thus, the adversary must query the random oracle H on the correct
input to distinguish a session key from a random key. We construct adversary B against
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(N + S)-CorrGapCDH in Figures 11 and 12 to interpolate between the two games. We
now describe adversary B in detail.
B gets as input (N + S) group elements and has access to oracles Corr and Ddh.

The first N group elements (A1, ..., AN ) are used as public keys for the parties P1, ...,PN
(line 02). The remaining group elements (B1, ..., BS) will be used as outputs for SessionI

and SessionR. This means that whenever A initiates a session sID, B increments the
session counter and chooses the secret random string esk. Instead of evaluating G, it
outputs the group element BsID (lines 22, 14). Note that as long as esk is unknown to
A, this is a perfect simulation.

To identify queries to the random oracle with correct Diffie-Hellman tuples, B uses
a flag f which is added as additional entry in the list of queries to H. This helps to
reduce the number of Ddh queries in oracles DerI or DerR. In particular, whenever A
calls one of the two oracles, B first checks the list of queries to H (lines 58, 41) and if
there is an entry with f = 1, it outputs the corresponding session key. If this is not the
case, it checks if there is an entry with unknown Diffie-Hellman tuples (lines 60, 43).
This is to keep session keys of matching sessions consistent. If there is no such entry,
B chooses a session key uniformly at random (lines 63, 46) and adds an entry with
unknown Diffie-Hellman tuples to the list. If A issues a query to H which has not been
asked before, B checks if the Diffie-Hellman tuples are correct using the Ddh oracle
(Fig. 12, line 02). In this case, it sets the flag f to 1. Furthermore, if there is an entry
with unknown values, it updates the entry (line 05) and outputs the corresponding key.
Otherwise, f is set to 0. B chooses a key uniformly at random (line 09), adds an entry
with f to the list and outputs the key.

We now describe how we patch random oracle G. As soon as the adversary has
queried both Rev-State and Corrupt for the owner of the session (i.e., the initiator
in a session of type “In” or the responder in a session of type “Re”), then it can query
G on the respective inputs. Thus, we fix the output value of G at exactly that time, i.e.,
on a corrupt query (after a state reveal query) as well as on a state reveal query (after
a corrupt query).

That is, whenever A calls Rev-State on sID, B checks if the owner of the session
is corrupted (Fig. 11, lines 27, 30). If this is the case, we have to patch the random
oracle G by querying the Corr oracle on BsID which is the message output by this
session (lines 28, 31). Note that the corresponding input has not been queried to G
before because then event BADState would have occurred.

Further, whenever A corrupts a party Pn, B queries the Corr oracle on n (line 69).
We then have to patch G for all sessions where Pn is the owner and the state of that
session was revealed (line 71). Note that the corresponding input has not been queried
to G before because then B would have already aborted.

If A makes a query to G, where the input a equals the secret key of any user which
was not corrupted before (Fig. 12, line 17), i.e., ga = An for some n ∈ [N ], then B is
able to compute a solution for the CorrGapCDH problem. It just looks for some An′
such that n′ was not queried to Corrupt or BsID such that bsID has not been revealed
via a Corr query. Then it can output C = (An′)a or C = (BsID)a as valid solution.
Note that such an An′ or BsID must exist. Note also that in this case, the adversary A
can trivially compute the session key for a valid test session.
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BCorr,Ddh(A1, ..., AN , B1, ..., BS)
00 cntP := N
01 for n ∈ [N ]
02 (pkn, skn) := (An,⊥)
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkN )
05 for sID∗ ∈ S
06 if Fresh(sID∗) = false return b
07 if Valid(sID∗) = false return b
08 return C ∈Win (see text)

SessionI((i, r) ∈ [N ]× [cntP])
09 cntS ++
10 sID := cntS
11 (init[sID], resp[sID]) := (i, r)
12 type[sID] := “In”
13 eski

$← {0, 1}λ
14 X := BsID
15 (I[sID], state[sID]) := (X, eski)
16 return (sID, X)

SessionR((i, r) ∈ [cntP]× [N ])
17 cntS ++
18 sID := cntS
19 (init[sID], resp[sID]) := (i, r)
20 type[sID] := “Re”
21 eskr

$← {0, 1}λ
22 Y := BsID
23 (R[sID], state[sID]) := (Y, eskr)
24 return (sID, Y )

Rev-State(sID)
25 revState[sID] := true
26 (i, r) := (init[sID], resp[sID])
27 if type[sID] = “In” and corrupted[i]
28 bsID := Corr(N + sID)
29 G[state[sID], ai] := bsID
30 else if type[sID] = “Re” and corrupted[r]
31 bsID := Corr(N + sID)
32 G[state[sID], ar] := bsID
33 return state[sID]

DerI(sID ∈ [cntS], Y )
34 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
35 return ⊥
36 (i, r) := (init[sID], resp[sID])
37 X := I[sID]
38 ctxt := (Ai, Ar, X, Y )
39 if ∃sID′ s. t. (type[sID′], R[sID′]) = (“Re”, Y )
40 P := P ∪ {sID}
41 if ∃Z1, Z2, Z3 s. t. H[ctxt, Z1, Z2, Z3, 1] = K
42 sKey[sID] := K
43 else if H[ctxt,⊥,⊥,⊥,⊥] = K
44 sKey[sID] := K
45 else
46 K $← K
47 H[ctxt,⊥,⊥,⊥,⊥] := K
48 sKey[sID] := K
49 (R[sID], sKey[sID]) := (Y,K)
50 return ε

DerR(sID ∈ [cntS], X)
51 if sKey[sID] 6= ⊥ or type[sID] 6= “Re”
52 return ⊥
53 (i, r) := (init[sID], resp[sID])
54 Y := R[sID]
55 ctxt := (Ai, Ar, X, Y )
56 if ∃sID′ s. t. (type[sID′], I[sID′]) = (“In”, X)
57 P := P ∪ {sID}
58 if ∃Z1, Z2, Z3 s. t. H[ctxt, Z1, Z2, Z3, 1] = K
59 sKey[sID] := K
60 else if H[ctxt,⊥,⊥,⊥,⊥] = K
61 sKey[sID] := K
62 else
63 K $← K
64 H[ctxt,⊥,⊥,⊥,⊥] := K
65 sKey[sID] := K
66 (I[sID], sKey[sID]) := (X,K)
67 return ε

Corrupt(n ∈ [N ])
68 corrupted[n] := true
69 an ← Corr(n)
70 skn := an
71 ∀sID with ((init[sID], type[sID]) = (n, “In”)

or (resp[sID], type[sID]) = (n, “Re”))
and revState[sID]

72 bsID ← Corr(N + sID)
73 G[state[sID], an] := bsID
74 return skn

Figure 11: Adversary B against (N + S)-CorrGapCDH for the proof of Theorem 4.
A has access to oracles O := {SessionI,SessionR,DerI,DerR,Rev-State,Reveal,
Corrupt,RegisterLTK,Test,G,H}, where RegisterLTK, Reveal and Test are
defined as in game G2 of Figure 10. Oracles H and G are defined in Figure 12. Lines
written in blue color highlight how B simulates G1 and G2, respectively.
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H(Ai, Ar, X, Y, Z1, Z2, Z3)
00 if H[Ai, Ar, X, Y, Z1, Z2, Z3, · ] = K
01 return K
02 if Ddh(Ai, Y, Z1) = 1

and Ddh(Ar, X, Z2) = 1
and Ddh(X,Y, Z3) = 1

03 f := 1
04 if H[Ai, Ar, X, Y,⊥,⊥,⊥,⊥] = K
05 replace (⊥,⊥,⊥,⊥) with (Z1, Z2, Z3, f)
06 return K
07 else
08 f := 0
09 K $← K
10 H[Ai, Ar, X, Y, Z1, Z2, Z3, f ] := K
11 return K

G(esk, a)
12 if G[esk, a] = z
13 return z
14 else if ∃sID s. t. esk = st[sID]

and revState[sID] = false
15 BADState := true
16 abort
17 else if ∃n ∈ [N ] s. t. An = ga

and corrupted[n] = false
18 abort and return C ∈Win (see text)
19 else
20 z $← Zp
21 G[esk, a] := z
22 return z

Figure 12: Oracles H and G for adversary B in Figure 11.

We now show that if A queries to the random oracle on the correct input for at least
one test session, B is able to output a solution C ∈Win to the CorrGapCDH problem.
Let sID∗ ∈ S be any test session and H[Ai∗ , Ar∗ , X∗, Y ∗, Z∗1 , Z∗2 , Z∗3 , 1] = sKey[sID∗] be
the corresponding entry in the list of hash queries. B has to find this query in the list
and depending on which reveal queries A has made (i.e., which attack was performed),
B returns either Z∗1 , Z∗2 or Z∗3 as described below. Therefore, we will now argue that for
each possible attack listed in Table 1, there will be a correct solution for CorrGapCDH.

Attack (1.)+(2.). There is a matching session sID′ and A has queried both long-term
secret keys ai∗ and ar∗ . A is not allowed to query the state of those sessions. W.l.o.g.
assume the test session is of type “Re”. Then, messages X∗ and Y ∗ are chosen by the
reduction B as BsID′ and BsID∗ . Thus, in order to distinguish the session key, A has to
compute Z∗3 = DH(X∗, Y ∗) = DH(BsID′ , BsID∗).

Attack (3.)+(4.). There is a matching session sID′ and A has queried both states
eski∗ and eskr∗ . A is not allowed to query the long-term secret keys of both parties.
Again, we assume that the test session is of type “Re” (w.l.o.g). The states do not reveal
any information about the exponents of X∗ and Y ∗ (i.e., BsID′ and BsID∗), as A has not
made a query to G specifying the correct long-term secret key. Also note that B never
queried the Corr oracle to reveal the exponents of BsID′ and BsID∗ or Ai∗ and Ar∗ .
Thus, in order to distinguish the session key, A has to compute all of the Diffie-Hellman
tuples Z∗1 = DH(Ai∗ , BsID∗), Z∗2 = DH(Ar∗ , BsID′) and Z∗3 = DH(BsID∗ , BsID′).

Attack (5.)+(6.). There is a matching session sID′ and A has queried the initiator’s
long-term secret key ai∗ and the responder’s state eskr∗ , but neither the responder’s
long-term secret key ar∗ nor the initiator’s state eski∗ . Again, assume the test session
is of type “Re” (w.l.o.g.). Message X∗ is chosen as BsID′ . In order to distinguish the
session key, A has to compute Z∗2 = DH(Ar∗ , X∗) = DH(Ar∗ , BsID′).

Attack (7.)+(8.). This is the same as the case before, only that the adversary queried
the other party’s long-term key or state. Message Y ∗ is chosen as BsID∗ and in order to
distinguish the session key, A has to compute Z∗1 = DH(Ai∗ , Y ∗) = DH(Ai∗ , BsID∗).
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Attack (11.). The test session is of type “In” and there is no matching session. A has
queried the initiator’s state eski∗ . Message X∗ is chosen as BsID∗ , whereby Y ∗ is chosen
by A. The state does not reveal any information about the exponent of X∗ (BsID∗) as
A has not made a query to G on (eski∗ , ai∗). In order to distinguish the session key, A
has to compute Z∗2 = DH(Ar∗ , BsID∗).
Attack (12.). The test session is of type “Re” and there is no matching session. A
has queried the responder’s state eskr∗ . Message Y ∗ is chosen as BsID∗ , whereby X∗
is chosen by A. The state does not reveal any information about the exponent of Y ∗
(BsID∗) as A has not made a query to G on (eskr∗ , ar∗). In order to distinguish the
session key, A has to compute Z∗1 = DH(Ai∗ , BsID∗) .
Attack (13.). The test session is of type “In” and there is no matching session. A has
queried the initiator’s long-term secret keys ai∗ . Message X∗ is chosen by the reduction
B as BsID∗ , whereby Y ∗ is chosen by A. In order to distinguish the session key, A has
to compute Z∗2 = DH(Ar∗ , X∗) = DH(Ar∗ , BsID∗).
Attack (16.). The test session is of type “Re” and there is no matching session. A
has queried the responder’s long-term secret keys ar∗ . Message Y ∗ is chosen by the
reduction B as BsID∗ , whereby X∗ is chosen by A. In order to distinguish the session
key, A has to compute Z∗1 = DH(Ai∗ , Y ∗) = DH(Ai∗ , BsID∗).

The number of queries to the Ddh oracle is upper bounded by 3 ·QH. Thus,∣∣Pr[GA2 ⇒ 1 | b = 0]− Pr[GA1 ⇒ 1 | b = 0]
∣∣ ≤ AdvCorrGapCDH

N+S, 3QH
(B) .

Finally, the output of the Test oracle in G2 is independent of the bit b, so we have

Pr[GA2 ⇒ 1] = 1
2 .

Collecting the probabilities yields the bound stated in Theorem 4.

6 Protocol HMQV
The HMQV protocol was first presented in [Kra05]. Compared to the original protocol,
we include the context into the hash of the session key (see Figure 1 in the introduction).
The protocol is defined relative to fixed parameters (p, g,G) that describe a group
G of prime order p = |G| and a generator g of G. G and H are hash functions with
G : G× {0, 1}∗ → Zp and H : G5 → {0, 1}λ, where λ ≥ log(p).

One reason to include the context into the hash is the definition of matching sessions.
The original proof is in the CK model which defines matching sessions solely based
on the involved parties and transcripts. The eCK model additionally includes the
session’s type (initiator or responder). Now consider an active adversary that initiates
two sessions of the same type. In the first query, it starts a session between parties
A and B and receives message X. In the second query, it starts a session between B
and A and receives message Y . Now it completes both sessions with the other message
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respectively. Both sessions will compute the same key, but will not be matching sessions
(as they are both of type “In”), thus the adversary can trivially win. This issue also
affects other role-symmetric protocols, as already noted by Cremers in [Cre09]. We can
avoid it by including the context inside the hash, as done in the analysis of [BCLS15]
and also in various variants of the protocol, e. g., [Ust08, YZ13, ZZ15].2

We give a tight reduction under CorrCRGapCDH. However, we cannot show security
against reflection attacks in general, which is why we require i∗ 6= r∗ for all test sessions,
indicated by the asterisk in IND-wFS-St∗. Note that the original proof of HMQV needs
the KEA assumption for the case that i∗ = r∗ and X 6= Y and the squared CDH
assumption3 for i∗ = r∗ and X = Y , which is implied by the standard CDH assumption
non-tightly.4

Theorem 5 ((N + S, QG + 2QH + 1)-CorrCRGapCDH tight,ROM−−−−−−−→ HMQV IND-wFS-St).
For any IND-wFS-St∗ adversary A against HMQV with N parties that establishes at
most S sessions and issues at most T queries to the Test oracle and QG queries to
random oracle G and QH queries to random oracle H, there exists an adversary B against
(N + S, QG + 2QH + 1)-CorrCRGapCDH with running time T(A) ≈ T(B) such that

AdvIND-wFS-St∗
HMQV (A) ≤ AdvCorrCRGapCDH

N+S,QG+2QH+1, QH
(B) + (N + S)2

p
.

Proof. Let A be an adversary against IND-wFS-St∗ security of HMQV, where N is the
number of parties, S is the maximum number of sessions that A establishes and T is
the maximum number of test sessions. Consider the sequence of games in Figure 13.
Game G0. This is the original IND-wFS-St∗ game. Similar to Equation (4), we implicitly
assume that all long-term keys and all messages output by SessionI and SessionR
are different. If such a collision happens, the game will abort. Using the birthday
paradox, the probability for that can be upper bounded by (N + S)2/(2p) as there are
N long-term key pairs and at most S messages, where exponents are chosen uniformly
at random from Zp. This rules out attack (0a.), as there will be no two sessions having
the same transcript. We get

Pr[IND-wFS-St∗A ⇒ 1] = Pr[GA0 ⇒ 1] + (N + S)2

2p .

2 Even when dropping the session’s type from the definition of matching sessions (similar
to the original CK model), giving a tight proof for the original version of HMQV seems
non-trivial since patching the random oracle H requires more care. In particular, it is always
necessary to check if the input corresponds to any session for which the adversary can
potentially compute the key, but the reduction itself cannot. In order to handle these queries
in a naive way, the reduction needs to query the Ddh oracle once for each session, leading
to O(QH · S) queries.

3 On input gx, the squared CDH problem requires to compute gx
2
.

4 We could also show security of HMQV including reflection attacks under a variant of
CorrCRGapCDH that does not restrict the winning condition on i 6= j and which can be
reduced non-tightly to squared GapCDH.
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GAMES G0, G1

00 cntP := N
01 for n ∈ [N ]
02 an

$← Zp; An := gan

03 (pkn, skn) := (An, an)
04 b $← {0, 1}
05 b′ ← AO(pk1, · · · , pkN )
06 for sID∗ ∈ S
07 if Fresh(sID∗) = false
08 return b
09 if Valid(sID∗) = false
10 return b
11 return Jb = b′K

SessionR((i, r) ∈ [cntP]× [N ])
12 cntS ++
13 sID := cntS
14 (init[sID], resp[sID]) := (i, r)
15 type[sID] := “Re”
16 y $← Zp; Y := gy

17 (R[sID], state[sID]) := (Y, y)
18 return (sID, Y )

DerR(sID ∈ [cntS], X)
19 if sKey[sID] 6= ⊥ or type[sID] 6= “Re”
20 return ⊥
21 (i, r) := (init[sID], resp[sID])
22 (Y, y) := (R[sID], state[sID])
23 d := G(X, IDr)
24 e := G(Y, IDi)
25 σ := (XAdi )y+ear

26 K := H((Ai, Ar, X, Y ), σ)
27 (I[sID], sKey[sID]) := (X,K)
28 return ε

G(Z, ID)
29 if G[Z, ID] = h return h
30 h $← Zp
31 G[Z, ID] := h
32 return h

SessionI((i, r) ∈ [N ]× [cntP])
33 cntS ++
34 sID := cntS
35 (init[sID], resp[sID]) := (i, r)
36 type[sID] := “In”
37 x $← Zp; X := gx

38 (I[sID], state[sID]) := (X,x)
39 return (sID, X)

DerI(sID ∈ [cntS], Y )
40 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
41 return ⊥
42 (i, r) := (init[sID], resp[sID])
43 (X,x) := (I[sID], state[sID])
44 d := G(X, IDr)
45 e := G(Y, IDi)
46 σ := (Y Aer)x+dai

47 K := H((Ai, Ar, X, Y ), σ)
48 (R[sID], sKey[sID]) := (Y,K)
49 return ε

Test(sID)
50 if sID ∈ S return ⊥
51 if sKey[sID] = ⊥ return ⊥
52 S := S ∪ {sID}
53 K∗0 := sKey[sID]
54 K∗0

$← K
55 K∗1

$← K
56 return K∗b

H(Ai, Ar, X, Y, σ)
57 if H[Ai, Ar, X, Y, σ] = K
58 return K
59 else
60 K $← K
61 H[Ai, Ar, X, Y, σ] := K
62 return K

Figure 13: Games G0-G1 for the proof of Theorem 5. A has access to or-
acles O := {SessionI,SessionR,DerI,DerR,Rev-State,Reveal,Corrupt,
RegisterLTK,Test,G,H}, where RegisterLTK,Corrupt,Rev-State and
Reveal are defined as in the original IND-wFS-St∗ game (see Figure 8). G0 implicitly
assumes that no long-term keys or messages generated by the experiment collide.

Game G1. In game G1, the challenge oracle Test always outputs a uniformly random
key, independent from the bit b (line 54). To show the difference between G1 and G0,
we can use that

∣∣Pr[GA1 ⇒ 1]− Pr[GA0 ⇒ 1]
∣∣ = 1

2
∣∣Pr[GA1 ⇒ 1 | b = 0]− Pr[GA0 ⇒ 1 | b = 0]

∣∣ ,
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as Pr[GA1 ⇒ 1 | b = 1] = Pr[GA0 ⇒ 1 | b = 1].
Due to the exclusion of collisions, a particular (test) session cannot be recreated, i.e.,

the adversary cannot create two sessions sID, sID′ of the same type that compute the
same session key. Thus, the only way to distinguish G1 from G0 is to query the random
oracle on the correct input. We construct adversary B against (N + S, QG + 2QH + 1)-
CorrCRGapCDH in Figure 14 to interpolate between the two games. We now describe
adversary B in detail.
B gets as input (N + S) group elements and has access to oracles Corr, Ch and

Ddh. The first N group elements (A1, ..., AN ) are used as public keys for the parties
P1, ...,PN (line 02). The remaining group elements (B1, ..., BS) will be used as messages
output by SessionI and SessionR. This means that whenever A initiates a session
sID, B increments the session counter and outputs the group element BsID (lines 13,
43). To identify queries to the random oracle with σ, B uses a flag f which is added as
additional entry in the list of queries to H. This helps to reduce the number of Ddh
queries in oracles DerI or DerR. Thus, whenever A calls one of the two oracles, B first
checks the list of random oracle queries if there has already been a query on the correct
σ indicated by f = 1 (lines 21, 51) and outputs the corresponding session key. If this is
not the case, it checks if there is an entry with unknown σ (lines 23, 53) to keep session
keys of matching sessions consistent. If there is no such entry, B chooses a session key
uniformly at random (lines 26, 56) and adds an entry with unknown σ to the list. If A
issues a random oracle query later, B checks if σ is correct using the Ddh oracle (line
66). In this case, it sets the flag f to 1. Furthermore, if there is an entry with unknown
σ (line 68), it updates the entry with the correct value and outputs the corresponding
key. Otherwise, f is set to 0. B chooses a key uniformly at random (line 73), adds an
entry with f to the list and outputs the key.

Whenever A calls Rev-State on sID, B queries the Corr oracle to reveal the
exponent of BsID which is the message output by this session (line 36) and returns
the corresponding exponent. Similarly, whenever A corrupts a party Pn, B queries the
Corr oracle on n (line 32).

Whenever A queries the random oracle G on a new pair (Z, ID), B queries its Ch
on Z (line 62) and returns the output.

We now show that if A queries H on the correct input for at least one test session,
B is able to output a solution C ∈Win to the CorrCRGapCDH problem.

Let sID∗ ∈ S be any test session and (Ai∗ , Ar∗ , X∗, Y ∗) be the context of this
test session. Then, A must have queried σ∗ = DH(Adi∗X∗, Aer∗Y ∗) to H, where d =
G(X∗, IDr∗) and e = G(Y ∗, IDi∗). Let d and e be the k1-th and k2-th output of G,
which means that (hk1 , Rk1) = (d,X∗) and (hk2 , Rk2) = (e, Y ∗). This means that there
is an (updated) entry (Ai∗ , Ar∗ , X∗, Y ∗, σ∗, 1) in the list of queries to H. B has to find
this query in the list and depending on which reveal queries A has made (i.e., which
attack was performed), B outputs a solution to CorrCRGapCDH as described below.
Therefore, we will now argue that for each possible attack listed in Table 1, there will
be a valid solution.

For the following cases, there is a matching session sID′ and we assume (w.l.o.g.)
that the test session is of type “Re”. Then, messages X∗ and Y ∗ are chosen by the
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BCorr,Ch,Ddh(A1, ..., AN , B1, ..., BS)
00 cntP := N
01 for n ∈ [N ]
02 (pkn, skn) := (An,⊥)
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkN )
05 for sID∗ ∈ S
06 if Fresh(sID∗) = false return 0
07 if Valid(sID∗) = false return 0
08 return C ∈Win (see text)

SessionR((i, r) ∈ [cntP]× [N ])
09 cntS ++
10 sID := cntS
11 (init[sID], resp[sID]) := (i, r)
12 type[sID] := “Re”
13 Y := BsID
14 (R[sID], state[sID]) := (Y,⊥)
15 return (sID, Y )

DerR(sID ∈ [cntS], X)
16 if sKey[sID] 6= ⊥ or type[sID] 6= “Re”
17 return ⊥
18 (i, r) := (init[sID], resp[sID])
19 Y := R[sID]
20 ctxt := (Ai, Ar, X, Y )
21 if ∃σ s. t. H[ctxt, σ, 1] = K
22 sKey[sID] = K
23 else if H[ctxt,⊥,⊥] = K
24 sKey[sID] = K
25 else
26 K $← K
27 H[ctxt,⊥,⊥] = K
28 sKey[sID] = K
29 (I[sID], sKey[sID]) := (X,K)
30 return ε

Corrupt(n ∈ [N ])
31 corrupted[n] := true
32 an ← Corr(n)
33 skn := an
34 return skn

Rev-State(sID)
35 revState[sID] := true
36 bsID ← Corr(N + sID)
37 state[sID] := bsID
38 return state[sID]

SessionI((i, r) ∈ [N ]× [cntP])
39 cntS ++
40 sID := cntS
41 (init[sID], resp[sID]) := (i, r)
42 type[sID] := “In”
43 X := BsID
44 (I[sID], state[sID]) := (X,⊥)
45 return (sID, X)

DerI(sID ∈ [cntS], Y )
46 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
47 return ⊥
48 (i, r) := (init[sID], resp[sID])
49 (X,x) := (I[sID], state[sID])
50 ctxt := (Ai, Ar, X, Y )
51 if ∃σ s. t. H[ctxt, σ, 1] = K
52 sKey[sID] = K
53 else if H[ctxt,⊥,⊥] = K
54 sKey[sID] = K
55 else
56 K $← K
57 H[ctxt,⊥,⊥] = K
58 sKey[sID] = K
59 (R[sID], sKey[sID]) := (Y,K)
60 return ε

G(Z, ID)
61 if G[Z, ID] = h return h
62 h← Ch(Z)
63 G[Z, ID] := h
64 return h

H(Ai, Ar, X, Y, σ)
65 if H[Ai, Ar, X, Y, σ, · ] = K return K
66 if (Ai, Ar) ∈ {A1, ..., AN}

and Ddh(AG(X,IDr)
i X,A

G(Y,IDi)
r Y, σ) = 1

67 f := 1
68 if H[Ai, Ar, X, Y,⊥,⊥] = K
69 replace (⊥,⊥) with (σ, f)
70 return K
71 else
72 f := 0
73 K $← K
74 H[Ai, Ar, X, Y, σ, f ] := K
75 return K

Figure 14: Adversary B against (N + S, QG + 2QH + 1)-CorrCRGapCDH for the
proof of Theorem 5. A has access to oracles O := {SessionI,SessionR,DerI,DerR,
Rev-State,Reveal,Corrupt,RegisterLTK,Test,G,H}, where RegisterLTK
and Reveal are defined as in Figure 13. Lines written in blue color highlight how B
simulates G0 and G1, respectively.
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reduction B as BsID′ and BsID∗ . In order to distinguish the session key, A has to compute
σ∗ = DH(Adi∗BsID′ , A

e
r∗BsID∗).

Attack (1.)+(2.). A has queried both long-term secret keys ai∗ and ar∗ . A is not
allowed to query the state of those sessions. When B recognizes a query on σ∗, it first
computes

σ∗ · (Aer∗Y ∗)−dai∗ · (X∗)−ear∗ = DH(X∗, Y ∗)

and then, in order to get a valid forgery in the CorrCRGapCDH, it has to make another
query to the Ch oracle. Note that this is the only case where we need this. Let it be the
k∗-th query. B can choose r ∈ Zp arbitrary and query Ch on Rk∗ := gr. It will receive
hk∗ and then computes

(DH(X∗, Y ∗))hk∗ · (Y ∗)r = DH((X∗)hk∗Rk∗ , Y ∗)
= DH((BsID′)hk∗Rk∗ , BsID∗)

Attack (3.)+(4.). A has queried both states bsID∗ and bsID′ , but is not allowed to
query the long-term secret keys of both parties. When B recognizes a query on σ∗, it
computes (

σ∗ · (Adi∗X∗)−bsID∗
)1/e = DH(Adi∗X∗, Ar∗) (6)

= DH(Ahk1
i∗ Rk1 , Ar∗)

Attack (5.)+(6.). A has queried the initiator’s long-term secret key ai∗ and the
responder’s state bsID∗ , but neither the responder’s long-term secret key ar∗ nor the
initiator’s state bsID′ . When B recognizes a query on σ∗, it computes

σ∗ · (Aer∗Y ∗)−dai∗ = DH(Aer∗Y ∗, X∗) (7)
= DH(Ahk2

r∗ Rk2 , BsID′)

Attack (7.)+(8.). This is the same as the case before, only that the adversary queried
the other party’s long-term key or state. B computes

σ∗ · (Adi∗X∗)−ear∗ = DH(Adi∗X∗, Y ∗) (8)
= DH(Ahk1

r∗ Rk1 , BsID∗)

For the remaining cases, there is no matching session.
Attack (11.). The test session is of type “In” and X∗ is chosen as BsID∗ , whereby Y ∗
is chosen by A. A has queried the initiator’s state bsID∗ . When B recognizes a query on
σ∗, it computes (

σ∗ · (Aer∗Y ∗)−bsID∗
)1/d = DH(Aer∗Y,Ai∗) (9)

= DH(Ahk2
r∗ Rk2 , Ai∗)
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Attack (12.). The test session is of type “Re” and Y ∗ is chosen as BsID∗ , whereby
X∗ is chosen by A. A has queried the responder’s state bsID∗ . When B recognizes a
query on σ∗, it makes the same computation as in Equation (6).
Attack (13.). The test session is of type “In” and X∗ is chosen as BsID∗ , whereby
Y ∗ is chosen by A. A has queried the initiator’s long-term secret keys ai∗ . When B
recognizes a query on σ∗, it makes the same computation as in Equation (7).
Attack (16.). The test session is of type “Re” and Y ∗ is chosen as BsID∗ , whereby
X∗ is chosen by A. A has queried the responder’s long-term secret keys ar∗ . When B
recognizes a query on σ∗, it makes the same computation as in Equation (8).

We showed that in each of these cases, the adversary outputs a correct solution for
CorrCRGapCDH. Note that the requirement that i∗ 6= r∗ is needed for attacks (3.)+(4.),
(11.) and (12.). The number of queries to the Ch oracle is upper bounded by QG+2QH+1
and the number of queries to the Ddh oracle by QH. Thus,∣∣Pr[GA1 ⇒ 1 | b = 0]− Pr[GA0 ⇒ 1 | b = 0]

∣∣ ≤ AdvCorrCRGapCDH
N+S,QG+2QH+1, QH

(B) .

Finally, the output of the Test oracle in G1 is independent of the bit b, so we have

Pr[GA1 ⇒ 1] = 1
2 .

Collecting the probabilities yields the bound stated in Theorem 5.

7 Concrete Bounds in the Generic Group Model
7.1 Generic Hardness of NAXOS

When analyzing NAXOS and X3DH−, we obtain the following generic bound.

Corollary 2 (Generic Hardness of NAXOS and X3DH−). For any adversary A (B)
against NAXOS (X3DH−) in the generic group and the random oracle model running in
time T(A) (T(B)), we have

AdvIND-wFS-St
NAXOS,GGM(A) = AdvIND-wFS

X3DH−,GGM(B) = Θ
(

T(A)2

p

)
.

Proof. Let A be an adversary against NAXOS with N parties that establishes at most S
sessions and issues at most T queries to the Test oracle, at most QG queries to random
oracle G, at most QH queries to random oracle H, and at most QOp queries to the group
oracle. Then T(A) = QOp +N + S + T +QRO is the running time of adversary A. Let
λ ≥ log(p) be the output length of G. Combining Corollary 1 with Theorem 4 we obtain

AdvIND-wFS-St
NAXOS,GGM(A) ≤ (QOp +N + S + 1)2

2p + 6QH
p

+ 3(N + S)2

p
+ S2

p
+ 2QGS

p

= O

(
T(A)2

p

)
,
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where we bounded the term (N+S−n′)2

2p + N+S−n′
p + (N+S)2

p ≤ 3(N+S)2

p .
The lower bound Ω( T(A)2

p ) follows by a simple discrete logarithm attack on NAXOS.
The same analysis applies to X3DH− since CorrGapCDH(N + S) tightly implies (N +
S, S)-CorrAGapCDH.

The corollary with matching upper and lower bounds shows that the generic bounds
on NAXOS and X3DH− are optimal.

7.2 Generic Hardness of HMQV

For HMQV, we split the running time of A into its offline running time by TOFF(A) =
QOp +QRO and its online running time by TON(A) = N + S + T . It is reasonable to
assume that TOFF(A)� TON(A), i.e., the adversary spends much more time on offline
queries than on online queries.

Corollary 3 (Generic Hardness of HMQV). For any adversary A against HMQV in
the generic group and the random oracle model running in online time TON(A) and
offline time TOFF(A), we have

AdvIND-wFS-St∗
HMQV,GGM(A) = O

(
TOFF(A)2 + TOFF(A) ·TON(A)2

p

)
.

Proof. Let A be an adversary against HMQV with N parties that establishes at most
S sessions and issues at most T queries to the Test oracle, at most QRO := QG +QH
queries to random oracles G and H, and at most QOp queries to the group oracle.
Then TOFF(A) = QOp + QRO and TON(A) = N + S + T are the offline resp. online
running times of adversary A. Combining Theorem 2 with Theorem 5 and assuming
QOp ≥ (N + S), we obtain

AdvIND-wFS-St∗
HMQV,GGM(A) ≤ (QOp +N + S + 1)2

2p + 2QRO

p
+ 3(N + S)2(2QRO + 1)

p

= O

(
TOFF(A)2

p
+ TOFF(A) ·TON(A)2

p

)
,

where we bounded the term

(N+S−n′)2(2QRO+1)
2p + (N+S−n′)(2QRO+1)

p + (N+S)2

p ≤ 3(N+S)2(2QRO+1)
p .

For HMQV we have an additive term in addition to the optimal bound Ω( TOFF(A)2

p ).
We claim that as long as TON(A) is not too large, there is no need to increase the size
of group G.

We fix a group G where the DL problem has 128-bit security, meaning p ≈ 2256.
Assuming TON(A) ≤ 264 and TOFF(A) ≤ 2128, we obtain by the corollary

AdvIND-wFS-St∗
HMQV,GGM(A)

T(A) =
AdvIND-wFS-St∗

HMQV,GGM(A)
TON(A) + TOFF(A) .

TOFF(A) + TON(A)2

p
. 2−128 .
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That is, HMQV has 128-bit security.
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A Omitted Proofs from Section 3
A.1 Proof of Theorem 1

Theorem 1 is proved by Lemmata 6 to 8. Proofs of these lemmas are very similar to
those in Section 3.2 of [KMP16], and are fairly straightforward. Hence, we only sketch
them here, instead of defining them with pseudo-codes. We first recall the reset lemma
from [BP02].
Lemma 5 (Reset Lemma [BP02]). Let H be a non-empty set. Let C be a randomized
algorithm that on input (I, h) returns a pair (b, σ), where b is a bit and σ is called the
side output. The accepting probability of C is defined as

acc := Pr[b = 1 | h $← H; (b, σ) $← C(I, h)]

The reset algorithm RC associated to C is the randomized algorithm that takes input I
and proceeds as follows.
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Algorithm RC(I):
00 Pick random coins ρ
01 h $← H
02 (b, s) $← C(I, h; ρ)
03 if b = 0 return (⊥,⊥) �Abort in Phase 1
04 h′ $← H
05 (b′, s′) $← C(I, h′; ρ)
06 if h 6= h′ and b′ = 1 return (s, s′)
07 else return (⊥,⊥)

Let
frk := Pr[(s, s′) 6= (⊥,⊥) | (s, s′) $← RC(I)].

Then

frk ≥
(

acc− 1
|H|

)2
.

Lemma 6 (GapCDH rewind.−−−−→ (2, 1)-CorrCRGapCDH). For any adversary A against
(2, 1)-CorrCRGapCDH, there exists an adversary B against GapCDH with T(B) ≈ 2T(A)
and

AdvCorrCRGapCDH
2,1,QDdh

(A) ≤
√

AdvGapCDH
QDdh

(B) + 1
p
.

Proof. We use the reset lemma (Lemma 5) with H := Zp and I := (A1, A2) := (ga1 , ga2).
We first define an algorithm C((A1, A2), h; ρ) with oracle access to Ddh that calls
A((A1, A2); ρ). It answers A’s single Ch(R) query with h and A’s Ddh queries with
Ddh of GapCDH in a straightforward way. In (2, 1)-CorrCRGapCDH, A cannot ask any
queries to Corr, as then A cannot win any more. Upon receiving A’s forgery C, C
checks if C = (Ahi R)aj with its Ddh oracle, where 1 ≤ i 6= j ≤ 2. If it holds, C returns
(1, s := (R, h,C)); otherwise, C returns (0,⊥). Thus, C returns b = 1 as long as A wins:

acc := AdvCorrCRGapCDH
2,1,QDdh

(A).

Now the reduction B that solves the GapCDH problem is constructed as follows. B
gets the problem instance (A1, A2) and has oracle access to Ddh from the GapCDH
problem. Next, it runs (s, s′) $← RC(I := (A1, A2)) as described in Lemma 5, with C
defined above. If (s, s′) 6= (⊥,⊥), then both transcripts s = (R, h,C) and s′ = (R, h′, C ′)
are (2, 1)-CorrCRGapCDH forgeries and h 6= h′. Wlog. we assume C = (Ah1R)a2 and
C ′ = (Ah′1 R)a2 . B can compute Aa2

1 as

Aa2
1 :=

(
C

C ′

)(h−h′)−1

.

By construction, B is successful iff RC is successful. By Lemma 5, B’s success probability
is bounded by

AdvGapCDH
QDdh

(B) = frk ≥
(

AdvCorrCRGapCDH
2,1,QDdh

(A)− 1
|Zp|

)2
.
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During the simulation, B queries Ddh at most 2(QDdh + 1) times (QDdh + 1 times for
each execution of C). The running time of B, T(B), is that of RC , namely, 2T(A), plus
the minor overhead of asking additional Ddh and computing the final result Aa2

1 from
C and C ′. We write T(B) ≈ 2T(A) to indicate that this is the dominating running
time of B.

Lemma 7 ((2, 1)-CorrCRGapCDH n2

−→ (n, 1)-CorrCRGapCDH). For any adversary A
against (n, 1)-CorrCRGapCDH, there exists an adversary B against (2, 1)-CorrCRGapCDH
with

AdvCorrCRGapCDH
n,1,QDdh

(A) ≤ n2 ·AdvCorrCRGapCDH
2,1,QDdh

(B). (10)

Proof. The simulator receives B1, B2 from the challenger, and chooses a pair of indexes
i∗, j∗ ∈ [n] at random. For i ∈ [n] \ {i∗, j∗}, it chooses ai $← Zp and computes Ai := gai .
Finally, it sets (Ai∗ , Aj∗) := (B1, B2), and calls A(A1, . . . , An). Any query to Ddh is
forwarded to the challengers oracle. The same is done for the single challenge call Ch(R1),
which returns h1. Calls to Corr(Ai) for i 6= i∗, j∗ are answered with the corresponding
discrete logarithm ai. The queries Corr(Ai∗) and Corr(Aj∗) are forwarded to the
challenger (note that such a query will cause us to lose the game). This simulator
perfectly simulates a CorrCRGapCDHn,1,QDdh

game from A’s viewpoint. At some point,
A will output a forgery

C ∈ {(Ah1
i ·R1)aj | (i, j) ∈ ([n] \ LA)2 ∧ (i 6= j)}.

For the simulator to win, we require that either (i∗, j∗) = (i, j) or (i∗, j∗) = (j, i),
meaning that we chose the correct pair of indexes from a set of

(
n
2
)
pairs. This means

that the probability of choosing correctly is 2
n(n−1) ≥

1
n2 , which gives us the result.

Lemma 8 ((n, 1)-CorrCRGapCDH QCh−−→ (n,QCh)-CorrCRGapCDH). For any adversary
A against (n,QCh)-CorrCRGapCDH, there exists an adversary B against (n, 1)-CorrCR-
GapCDH with

AdvCorrCRGapCDH
n,QCh,QDdh

(A) ≤ QCh ·AdvCorrCRGapCDH
n,1,QDdh

(B). (11)

Proof. The simulation starts with B picking a random integer r $← [QCh]. Then, any
query from A to either Ddh or Corr is forwarded to the appropriate oracle by. When
responding to calls to Ch, B keeps track of how many such queries A has submitted.
For every query Ch(Ri) with i ∈ [QCh] \ {r}, B returns hi $← Zp. On the r’th query, B
submits a query to the challengers Ch oracle, and forwards the response to A. At some
point A will submit a forgery

C ∈ {(Ahki ·Rk)aj | (i, j, k) ∈ ([n] \ LA)2 × [QCh] ∧ (i 6= j)}.

Then we have that Pr[k = r] ≤ 1
QCh

, in which case B forwards C and wins the game.

A.2 Proofs of Other Useful Lemmas

Lemmata 1 to 3 and Lemma 9 are about the relation among GapCDH, CorrGapCDH
and CorrAGapCDH. These lemmas complete Figure 5 of Section 3. We give their proofs
here.
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Proof (of Lemma 1). B receives a tuple (A1, . . . , An) from the CorrCRGapCDHn,1,QDdh

challenger, and forwards it to adversary A. When A submits a query to Corr or Ddh,
B forwards it to the appropriate CorrCRGapCDHn,1,QDdh

oracle, and returns the response.
At some point, A will output a forgery C. We assume that the forgery is valid, meaning
that C = A

aj
i for i 6= j and i, j /∈ LA. The reduction queries Ch(R = 1), and receives a

challenge h. Finally, B submits a forgery Ch = (Aaji )h = (Ahi · 1)aj , which is clearly a
valid forgery in the CorrCRGapCDHn,1,QDdh

game.

Proof (of Lemma 2). Let A be an adversary that solves the n-CorrGapCDH problem.
Given a GapCDH instance (B1, B2) := (gb1 , gb2) ∈ G2 and the oracle Ddh, B guesses
two distinct i∗, j∗ from [n] and define (Ai∗ , Aj∗) := (B1, B2) and, for i ∈ [n] \ {i∗, j∗},
B chooses ai $← Zp and compute Ai := gai . Then B calls A(A1, . . . , An) and answer
A’s oracle queries in a straightforward way:
– Upon Corr(i ∈ [n]), if i = i∗ or i = j∗, B aborts; otherwise, B returns ai.
– Upon Ddh(X,Y, Z), B answers with the Boolean value JZ = Y DLg(X)K.

WhenA outputs it forgery C and terminates, if B guessed (i∗, j∗) correctly and C is valid,
namely, C = A

aj∗
i∗ = Bb2

1 , then B submits C to break the GapCDH problem; otherwise, B
aborts. Thus, B wins if it guesses i∗, j∗ correctly and A wins. Moreover, since two distinct
i∗, j∗ are chosen randomly from [n], the probability that B correctly guesses these indices
is bounded by 1/n2. Hence, we arrive at AdvGapCDH

QDdh
(B) ≥ 1

n2 AdvCorrGapCDH
n,QDdh

(A).

Lemma 9 (GapCDH −→ n-GapCDH). For any adversary A against n-GapCDH (n > 2),
there exists an adversary B against GapCDH with

AdvGapCDH
n,QDdh

(A) ≤ 2AdvGapCDH
2,QDdh

(B).

Proof. We prove this tight implication by using a re-randomization argument. B is
constructed in the following way to break the GapCDH assumption: Upon receiving
(B1, B2) from the GapCDH challenger, for i ∈ [n], B chooses ri $← Zp, flips a random
coin δi ∈ {0, 1}, and computes Ai := B1 · gri if δi = 0 or Ai := B2 · gri if δi = 1. Then
B calls the adversary A(A1, . . . , An). Queries to Ddh(X,Y, Z) are forwarded to the
challengers Ddh oracle.

Eventually A outputs its forgery C. If C = A
aj
i and δi 6= δj , then B breaks the

GapCDH assumption with C ′ := C/(Brj1 B
ri
2 g

rirj ), assuming δi = 0 and δj = 1 w.l.o.g..
We note that δi and δj are two independent random coins and thus Pr[δi 6= δj ] =
Pr[(δi, δj) = (0, 1)] + Pr[(δi, δj) = (1, 0)] = 1/2. This concludes the lemma.

Proof (of Lemma 3). We construct a reduction B as follow: B receives a GapCDH
instance (B1, B2) := (gb1 , gb2) and guesses an index i∗ $← [n1] on which A will output a
forgery. B defines Ai∗ := B1 and for i ∈ [n1] \ {i∗} B chooses ai $← Zp and computes
Ai := gai . For i ∈ [n1 + 1, n] B re-randomizes B2 to get Ai as in Lemma 9, namely, it
chooses ri $← Zp and computes Ai := B2 · gri . Then B calls A with (A1, . . . , An) and
answers A’s oracle queries as follows:
– Upon Ddh(X,Y, Z), B forwards it to the corresponding GapCDH oracle.
– Upon Corrn1(i ∈ n1), if i = i∗ then B aborts; else, B stores i in LA and returns ai.
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Eventually, A outputs its forgery C and terminates. If C is a valid forgery and B guesses
i∗ correctly, then C = A

b2+rj∗
i∗ = B

b2+rj∗
1 and B returns C ′ := C/B

rj∗
1 as its forgery to

GapCDH. We note that the probability that i∗ is a correct guess is bounded by 1/n1,
which concludes the proof.

B Proof of Theorem 3

Proof. Let A be an adversary against IND-wFS security of X3DH−, where N is the
number of parties, S is the maximum number of sessions that A establishes and T is
the maximum number of test sessions. Consider the sequence of games in Figure 15.
Game G0. This is the original IND-wFS game. As in Equation (4), we implicitly assume
that all long-term keys and all messages output by SessionI and SessionR are different.
If such a collision happens, the game will abort. Using the birthday paradox, the
probability for that can be upper bounded by (N + S)2/(2p) as there are N long-term
key pairs and at most S messages, where exponents are chosen uniformly at random
from Zp. This rules out attack (0a.), as there will be no two sessions having the same
transcript. We get

Pr[IND-wFSA ⇒ 1] = Pr[GA0 ⇒ 1] + (N + S)2

2p .

Game G1. In game G1, the challenge oracle Test outputs a uniformly random key for
test sessions which will not have a matching session. Therefore, we initialize a set P
and each time DerI or DerR is called, we check if there is a potential matching session
(lines 23, 40), i.e., the input message was output by SessionI or SessionR. If this is
the case, we add the session ID to the set (lines 24, 41). A Test query on such an sID
will behave exactly as in G0, whereas for the other sessions, it outputs a random key
independently of bit b (line 53). Similar to Equation (5), it holds that∣∣Pr[GA1 ⇒ 1]− Pr[GA0 ⇒ 1]

∣∣ = 1
2
∣∣Pr[GA1 ⇒ 1 | b = 0]− Pr[GA0 ⇒ 1 | b = 0]

∣∣ .
We construct adversary B against (N + S,N)-CorrAGapCDH in Figure 16. B gets as

input (N + S) group elements and has access to oracles Corr and Ddh. The first N
group elements (A1, ..., AN ) are used as public keys for the parties P1, ...,PN (line 02).
The remaining group elements (B1, ..., BS) will be used as messages output by SessionI

and SessionR. This means that whenever A initiates a session sID, B increments the
session counter and outputs the next group element BsID (lines 15, 22). Whenever
A calls DerI or DerR, B behaves exactly as adversary B in Figure 11. In particular,
it keeps the session keys consistent with the random oracle H using its Ddh oracle.
Whenever A corrupts a party Pn, B queries its own oracle Corr on n (line 26) and
outputs the corresponding exponent.

The Test oracle outputs the real session key for all queries if b = 0 (line 32). If
b = 1, it outputs a random key for all those test session that will not have a matching
session (line 36), and the real session key otherwise (line 34). Due to the exclusion of
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GAMES G0, G1 , G2

00 cntP := N
01 for n ∈ [N ]
02 an

$← Zp; An := gan

03 (pkn, skn) := (An, an)
04 b $← {0, 1}
05 b′ ← AO(pk1, · · · , pkN )
06 for sID∗ ∈ S
07 if Fresh(sID∗) = false
08 return b
09 if Valid(sID∗) = false
10 return b
11 return Jb = b′K

SessionR((i, r) ∈ [cntP]× [N ])
12 cntS ++
13 sID := cntS
14 (init[sID], resp[sID]) := (i, r)
15 type[sID] := “Re”
16 y $← Zp; Y := gy

17 (R[sID], state[sID]) := (Y, y)
18 return (sID, Y )

DerR(sID ∈ [cntS], X)
19 if sKey[sID] 6= ⊥ or type[sID] 6= “Re”
20 return ⊥
21 (i, r) := (init[sID], resp[sID])
22 (Y, y) := (R[sID], state[sID])
23 if ∃sID′ s. t. (type[sID′], I[sID′]) =

(“In”, X)
24 P := P ∪ {sID}
25 ctxt := (Ai, Ar, X, Y )
26 K := H(ctxt, Ayi , X

ar , Xy)
27 (I[sID], sKey[sID]) := (X,K)
28 return ε

SessionI((i, r) ∈ [N ]× [cntP])
29 cntS ++
30 sID := cntS
31 (init[sID], resp[sID]) := (i, r)
32 type[sID] := “In”
33 x $← Zp; X := gx

34 (I[sID], state[sID]) := (X,x)
35 return (sID, X)

DerI(sID ∈ [cntS], Y )
36 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
37 return ⊥
38 (i, r) := (init[sID], resp[sID])
39 (X,x) := (I[sID], state[sID])
40 if ∃sID′ s. t. (type[sID′], R[sID′]) =

(“Re”, Y )
41 P := P ∪ {sID}
42 ctxt := (Ai, Ar, X, Y )
43 K := H(ctxt, Y ai , Axr , Y x)
44 (R[sID], sKey[sID]) := (Y,K)
45 return ε

Test(sID)
46 if sID ∈ S return ⊥ �already tested
47 if sKey[sID] = ⊥ return ⊥
48 S := S ∪ {sID}
49 K∗0 := sKey[sID]
50 if sID ∈ P
51 K∗0 := sKey[sID]
52 else
53 K∗0

$← K

54 K∗0
$← K

55 K∗1
$← K

56 return K∗b

H(Ai, Ar, X, Y, Z1, Z2, Z3)
57 if H[Ai, Ar, X, Y, Z1, Z2, Z3] = K
58 return K
59 else
60 K $← K
61 H[Ai, Ar, X, Y, Z1, Z2, Z3] := K
62 return K

Figure 15: Games G0-G2 for the proof of Theorem 3. A has access to oracles
O := {SessionI,SessionR,DerI,DerR,Reveal,Corrupt,RegisterLTK,Test,
H}, where RegisterLTK, Corrupt and Reveal are defined as in the original
IND-wFS game (Fig. 8). G0 implicitly assumes that no long-term keys or messages
generated by the experiment collide.

collisions, a particular (test) session cannot be recreated, i.e., the adversary cannot
create two sessions sID, sID′ of the same type that compute the same session key. Thus,
the only way to distinguish the two games is to query the random oracle on the correct
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BCorr,Ddh(A1, ..., AN , B1, ..., BS)
00 cntP := N
01 for n ∈ [N ]
02 (pkn, skn) := (An,⊥)
03 b $← {0, 1}
04 b′ ← AO(pk1, · · · , pkN )
05 for sID∗ ∈ S
06 if Fresh(sID∗) = false
07 return b
08 if Valid(sID∗) = false
09 return b
10 return C ∈Win (see text)

SessionR((i, r) ∈ [cntP]× [N ])
11 cntS ++
12 sID := cntS
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 Y := BsID
16 (R[sID], state[sID]) := (Y,⊥)
17 return (sID, Y )

SessionI((i, r) ∈ [N ]× [cntP])
18 cntS ++
19 sID := cntS
20 (init[sID], resp[sID]) := (i, r)
21 type[sID] := “In”
22 X := BsID
23 (I[sID], state[sID]) := (X,⊥)
24 return (sID, X)

Corrupt(n ∈ [N ])
25 corrupted[n] := true
26 an ← Corr(n)
27 skn := an
28 return skn

Test(sID)
29 if sID ∈ S return ⊥
30 if sKey[sID] = ⊥ return ⊥
31 S := S ∪ {sID}
32 K∗0 := sKey[sID]
33 if sID ∈ P
34 K∗1 := sKey[sID]
35 else
36 K∗1

$← K
37 return K∗b

Figure 16: Adversary B against (N + S,N)-CorrAGapCDH for the proof of Theorem
3. A has access to oracles O := {SessionI,SessionR,DerI,DerR,Reveal,Corrupt,
RegisterLTK,Test,H}, where RegisterLTK and Reveal are defined as in game
G1. Oracles DerI, DerR and H are defined as for adversary B in Figure 11. Lines
written in blue color highlight how B simulates G0 and G1, respectively.

input for a test session which does not have a matching session. Next we show that if
this happens, B is able to output a solution C ∈Win to the CorrAGapCDH problem.

Let sID∗∈ S be such a test session and H[Ai∗ , Ar∗ , X∗, Y ∗, Z∗1 , Z∗2 , Z∗3 , 1] = sKey[sID∗]
be the corresponding entry in the list of hash queries. B has to find this query in the list
and depending on which reveal queries A has made (i.e., which attack was performed),
B returns either Z∗1 , Z∗2 or Z∗3 as described below. Therefore, we will now argue that
for those attacks in Table 2 which consider non-matching sessions, there will be a valid
solution for CorrAGapCDH.

Attack (13.). The test session is of type “In” and A has queried the initiator’s long-
term secret keys ai∗ . Furthermore, message X∗ is chosen by the reduction B as BsID∗ ,
whereby Y ∗ is chosen by A. In order to distinguish the session key, A has to compute
Z∗2 = DH(Ar∗ , X∗) = DH(Ar∗ , BsID∗) which is a correct solution for CorrAGapCDH.

Attack (16.). The test session is of type “Re” and A has queried the responder’s long-
term secret keys ar∗ . Furthermore, message Y ∗ is chosen by the reduction B as BsID∗ ,
whereby X∗ is chosen by A. In order to distinguish the session key, A has to compute
Z∗1 = DH(Ai∗ , Y ∗) = DH(Ai∗ , BsID∗) which is a correct solution for CorrAGapCDH.
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The number of queries to the Ddh oracle is upper bounded by 3 ·QH. Thus,∣∣Pr[GA1 ⇒ 1 | b = 0]− Pr[GA0 ⇒ 1 | b = 0]
∣∣ ≤ AdvCorrAGapCDH

N+S,N, 3QH
(B) .

Game G2. In game G2, the challenge oracle Test always outputs a uniformly random
key, independent from the bit b (Fig. 15, line 54). As Pr[GA2 ⇒ 1 | b = 1] = Pr[GA1 ⇒
1 | b = 1], it holds that∣∣Pr[GA2 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ = 1
2
∣∣Pr[GA2 ⇒ 1 | b = 0]− Pr[GA1 ⇒ 1 | b = 0]

∣∣ .
We construct adversary C against S-GapCDH in Figure 17. C gets as input S group
elements (B1, ..., BS) and has access to oracle Ddh. The long-term key pairs are chosen
by C (line 02). The input elements will be used as messages output by SessionI and
SessionR as in adversary B described before. Again, we use a flag f to identify correct
queries and thus reduce the number of queries to Ddh. Whenever A calls DerI or
DerR, C first computes the two Diffie-Hellman tuples which use the long-term secret
keys (lines 19, 37). For the third one, it checks the list of random oracle queries for an
entry with f = 1 (lines 20, 38) and outputs the corresponding session key. If this is
not the case, it checks if there is an entry with an unknown Diffie-Hellman tuple (lines
22, 40) or chooses a session key uniformly at random (lines 25, 43) and adds such an
entry to the list. If A issues a random oracle query which has not been asked before, C
checks if the third Diffie-Hellman tuple is correct using the Ddh oracle (line 59). In this
case, it sets the flag f to 1. Furthermore, if there is an entry with an unknown value, it
updates the entry with the correct value (line 61) and outputs the corresponding key.
Otherwise, f is set to 0. C chooses a key uniformly at random (line 66), adds an entry
with f to the list and outputs the key.

The Test oracle outputs a random key for all queries if b = 1 (line 55). If b = 0, it
outputs a random key for all those test session that will not have a matching session (line
54), and the real session key otherwise (line 52). As a particular (test) session cannot be
recreated, the only way to distinguish the two games is to query the random oracle on
the correct input for a test session which is in the set P of potential matching sessions.
Let sID∗ ∈ P be such a test session and H[Ai∗ , Ar∗ , X∗, Y ∗, Z∗1 , Z∗2 , Z∗3 , 1] = sKey[sID∗]
be the corresponding entry for such a test session in the list of hash queries. At this point,
it does not matter whether the adversary completes the potential matching session or
not. What matters is that both messages X∗ and Y ∗ are chosen by the reduction B as
BsID∗ and BsID′ . We assume that the adversary may query both long-term keys thus
covering attacks (1.)+(2.) of Table 2. In order to distinguish the session key, A has to
compute Z∗3 = DH(X∗, Y ∗) = DH(BsID∗ , BsID′) which is a correct solution C ∈Win to
the S-GapCDH problem.

The number of queries to the Ddh oracle is upper bounded by QH. Thus,∣∣Pr[GA2 ⇒ 1 | b = 0]− Pr[GA1 ⇒ 1 | b = 0]
∣∣ ≤ AdvGapCDH

S,QH
(C) .

Finally, the output of the Test oracle in G2 is independent of the bit b, so we have

Pr[GA2 ⇒ 1] = 1
2 .

Collecting the probabilities yields the bound stated in Theorem 3.
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CDdh(B1, ..., BS)
00 cntP := N
01 for n ∈ [N ]
02 an

$← Zp; An := gan

03 (pkn, skn) := (An, an)
04 b $← {0, 1}
05 b′ ← AO(pk1, · · · , pkN )
06 for sID∗ ∈ S
07 if Fresh(sID∗) = false
08 return b
09 if Valid(sID∗) = false
10 return b
11 return C ∈Win (see text)

DerR(sID ∈ [cntS], X)
12 if sKey[sID] 6= ⊥ or type[sID] 6= “Re”
13 return ⊥
14 (i, r) := (init[sID], resp[sID])
15 Y := R[sID]
16 ctxt := (Ai, Ar, X, Y )
17 if ∃sID′ s. t. (type[sID′], I[sID′]) = (“In”, X)
18 P := P ∪ {sID}
19 (Z1, Z2) := (Y ai , Xar )
20 if ∃Z3 s. t. H[ctxt, Z1, Z2, Z3, 1] = K
21 sKey[sID] := K
22 else if H[ctxt, Z1, Z2,⊥,⊥] = K
23 sKey[sID] := K
24 else
25 K $← K
26 H[ctxt, Z1, Z2,⊥,⊥] := K
27 sKey[sID] := K
28 (I[sID], sKey[sID]) := (X,K)
29 return ε

DerI(sID ∈ [cntS], Y )
30 if sKey[sID] 6= ⊥ or type[sID] 6= “In”
31 return ⊥
32 (i, r) := (init[sID], resp[sID])
33 X := I[sID]
34 ctxt := (Ai, Ar, X, Y )
35 if ∃sID′ s. t. (type[sID′], R[sID′]) = (“Re”, Y )
36 P := P ∪ {sID}
37 (Z1, Z2) := (Y ai , Xar )
38 if ∃Z3 s. t. H[ctxt, Z1, Z2, Z3, 1] = K
39 sKey[sID] := K
40 else if H[ctxt, Z1, Z2,⊥,⊥] = K
41 sKey[sID] := K
42 else
43 K $← K
44 H[ctxt, Z1, Z2,⊥,⊥] := K
45 sKey[sID] := K
46 (R[sID], sKey[sID]) := (Y,K)
47 return ε

Test(sID)
48 if sID ∈ S return ⊥
49 if sKey[sID] = ⊥ return ⊥
50 S := S ∪ {sID}
51 if sID ∈ P
52 K∗0 := sKey[sID]
53 else
54 K∗0

$← K
55 K∗1

$← K
56 return K∗b

H(Ai, Ar, X, Y, Z1, Z2, Z3)
57 if H[Ai, Ar, X, Y, Z1, Z2, Z3, · ] = K
58 return K
59 if Ddh(X,Y, Z3) = 1
60 f := 1
61 if H[Ai, Ar, X, Y, Z1, Z2,⊥,⊥] = K
62 replace (⊥,⊥) with (Z3, f)
63 return K
64 else
65 f := 0
66 K $← K
67 H[Ai, Ar, X, Y, Z1, Z2, Z3, f ] := K
68 return K

Figure 17: Adversary C against S-GapCDH for the proof of Theorem 3. A has access to
oracles O := {SessionI,SessionR,DerI,DerR,Reveal,Corrupt,RegisterLTK,
Test,H}, where SessionI and SessionR are defined as for adversary B in Figure 16.
RegisterLTK, Reveal and Corrupt are defined as in game G1. Lines written in
blue color highlight how C simulates G1 and G2, respectively.
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Abstract. We introduce new tightly-secure authenticated key exchange (AKE)
protocols that are extremely efficient, yet have only a constant security loss and
can be instantiated in the random oracle model both from the standard DDH
assumption and a subgroup assumption over RSA groups. These protocols can be
deployed with optimal parameters, independent of the number of users or sessions,
without the need to compensate a security loss with increased parameters and
thus decreased computational efficiency.
We use the standard “Single-Bit-Guess” AKE security (with forward secrecy and
state corruption) requiring all challenge keys to be simultaneously pseudo-random.
In contrast, most previous papers on tightly secure AKE protocols (Bader et
al., TCC 2015; Gjøsteen and Jager, CRYPTO 2018; Liu et al., ASIACRYPT
2020) concentrated on a non-standard “Multi-Bit-Guess” AKE security which
is known not to compose tightly with symmetric primitives to build a secure
communication channel.
Our key technical contribution is a new generic approach to construct tightly-
secure AKE protocols based on non-committing key encapsulation mechanisms.
The resulting DDH-based protocols are considerably more efficient than all
previous constructions.

Keywords: Authenticated key exchange, tightness, non-committing encryption, for-
ward security

1 Introduction
Authenticated Key Exchange (AKE) is a fundamental cryptographic primitive with
immense practical importance. The goal is to securely establish a session key between
two parties in a network where an adversary can read, send, modify or delete messages
and may also corrupt selected parties and sessions.
Tightness of AKE. When proving a cryptographic scheme secure, one commonly
describes a security reduction which transforms an adversary A that breaks the crypto-
graphic scheme into an adversary B that solves some underlying complexity assumption.
For instance, if A has advantage ε in breaking the scheme and B solves the problem
with advantage ε′ = ε/L, then L is called the reduction’s security loss. If L is constant
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(and in particular independent of the number of A’s oracle queries) and additionally
the running times of A and B are roughly identical, then we say the reduction is tight.
Especially when choosing protocol-specific system parameters, the tightness of a security
proof plays an important role. In the security model for AKE the attacker can actively
control all messages sent between the involved parties and is additionally allowed to
reveal secret information such as a long-term secret key (by corrupting a party), or
a session key. The adversary breaks security if it is able to distinguish non-revealed
session keys from random.
Multi-Challenge Security definitions. The standard and well established security
notion in the context of multiple challenges [BBM00, FHKP13, GHKW16, CCG+19] is
“Single-Bit Guess” (SBG) security. The blueprint of a SBG security experiment is as
follows. First, the experiment picks a secret random bit b ∈ {0, 1}. Next, the adversary
is allowed to make multiple (up to, say, T ) challenge queries. On each challenge query,
the experiment returns a “real key” if b = 0, and an independent “random key” if b = 1.
The adversary wins if it can guess the challenge bit b with a probability better than 1/2.

In AKE protocols, challenge queries are usually called test queries and non-revealed
session keys can be accessed by making multiple calls to a Test oracle. If b = 0, a query
to Test returns the real challenge key; if b = 1, a query to Test returns an independent
random challenge key. This notation of multi-challenge SBG security for AKE was first
formalized in 2019 by Cohn-Gordon et al. [CCG+19]. By conditioning on bit b, SBG
security is known to be tightly equivalent to (single-bit) “Real-Or-Random” (ROR)
security, where the adversary has to distinguish a real game (where all challenge keys
output by Test are real) from a random game (where all challenge keys are random).
Using the above equivalence, SBG security precisely captures the intuition that all
challenge keys are simultaneously pseudo-random.

Surprisingly, in the first publication on tightly secure AKE protocols in 2015, Bader
et al. [BHJ+15] defined a different and non-standard “Multi-Bit-Guess” (MBG) AKE
security notion. In MBG security, the experiment picks multiple independent challenge
bits b1, . . . , bT and, on the i-th Test query, it returns a real challenge key if bi = 0
and a random challenge key if bi = 1. That is, each of the T challenge keys depends
on an independent challenge bit bi. The adversary wins if it can guess correctly one of
the T challenge bits bi∗ with a probability better than 1/2. We are not aware of any
meaningful multi-bit ROR security game that is tightly equivalent to MBG security.1
This makes it difficult to provide a good intuition of what MBG security tries to model.
Choosing a Meaningful Security Model for AKE. SBG and MBG security are
asymptotically equivalent but only imply each other with a security loss of T , the total
number of Test queries. Hence, when considering tightness, one has to carefully choose
a meaningful security model.
1 If one tries to apply a similar conditioning argument as in the single-bit case, MBG can
be shown equivalent to a ROR-type security experiment where in the real game (bi∗ = 0)
the i∗-th challenge key output by Test is real and in the random game (bi∗ = 1) it is
random. However, the remaining T − 1 keys still depends on the random bits bi (i 6= i∗):
the i-th challenge key is real if bi = 0 and it is random if bi = 1. Hence, about one half of
the challenge keys is expected to be real (the ones with bi = 0) whereas the other half is
random, and the adversary does not have any information on them.
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First off, as already pointed out, SBG security is the standard and well established
security notion in the context of multiple challenges [BBM00, FHKP13, GHKW16,
CCG+19]. Cohn-Gordon et al. [CCG+19, Section 3] already pointed out that, in the
AKE setting, SBG security tightly composes with symmetric primitives, whereas MBG
security doesn’t. Let us elaborate. AKE is not intended to be used as a stand-alone
primitive. Rather, it is naturally composed with symmetric primitives to establish a
secure channel [BFWW11, JKSS12], for example to encrypt (e.g., using AES) a message
with the session key. Since SBG security is tightly equivalent to ROR security, it offers
precisely the right security interface to switch all challenge keys at once from real
to random. This step allows to infer the privacy of the encrypted messages from the
security properties of the symmetric primitive. MBG security, on the other hand, does
not have a meaningful ROR-style security, which makes it difficult to argue about the
privacy of the encrypted messages without relying on a hybrid argument. In summary,
in the context of tightness of AKE protocols, SBG security is a meaningful notion
whereas MBG isn’t.
Previous Results. Previous work on tight AKE protocols by Gjøsteen and Jager [GJ18]
and Liu at al. [LLGW20] exclusively concentrated on the MBG model by Bader et
al. [BHJ+15]. We now give a brief overview of existing AKE protocols in the context of
tight SBG security.
– At CRYPTO 2019, Cohn-Gordon et al. [CCG+19] presented highly efficient two

message AKE protocols with implicit authentication, in the style of HMQV [Kra05]
and similar protocols. Their schemes achieve a loss of O(N) in the SBG security
model with weak forward secrecy, where N is the number of users. They also extend
the impossibility results from [BJLS16] to show that a loss of O(N) is unavoidable
for many natural protocols (including HMQV [Kra05], NAXOS [LLM07], Kudla-
Paterson [KP05], KEA+ [LM06]) with respect to typical cryptographic security
proofs (so-called simple reductions). Furthermore, since their protocol does not
feature explicit authentication, a well-known impossibility result applies [Kra05,
BG11, Sch15] and their protocol cannot achieve full forward security.

– Diemert and Jager [DJ20] and independently Davis and Günther [DG20] considered
the three message TLS 1.3 handshake AKE protocol with explicit authentication.
Its design follows the standard “1×KEM+2×SIG” (aka. signed Diffie-Hellman) AKE
approach [CK01, CF12, GJ18, DJ20, DG20, LLGW20]. TLS 1.3, when instantiated
with standardized signatures (e.g., RSA-PSS, RSA-PKCS #1 v1.5, ECDSA, or
EdDSA), has rather non-tight SBG security with full forward security. But when
instantiated with tightly secure signatures in the multi-user setting with adap-
tive corruptions [BHJ+15], then SBG security of TLS 1.3 actually becomes tight.
Since the TLS 1.3 protocol contains two signatures, the inefficiency of currently
known tightly secure signature schemes [BHJ+15, GJ18] makes the resulting TLS
instantiation very impractical.

1.1 The Difficulty of Constructing Tightly Secure AKE

Security models for authenticated key exchange are extremely complex, as they consider
very strong adversaries that may modify, drop, or inject messages. Furthermore, usually
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an adversary may adaptively corrupt users’ long-term secrets via Corrupt-queries,
session keys via Reveal-queries, and sometimes even ephemeral states of sessions via
Rev-State-queries. Security is formalized with multiple Test queries, where the adver-
sary specifies a session, receives back a real key or a random key, and has to distinguish
these. This complexity makes achieving tight security challenging, particularly because
all the following difficulties must be tackled simultaneously.

The “commitment problem”. As explained in more detail in [GJ18], this problem
is the reason why nearly all security proofs of classical key exchange protocols have
a quadratic security loss. Essentially, the problem is that most AKE protocols have
security proofs where a reduction can only extract a solution to a computationally hard
problem if an instance of the problem is embedded into the protocol messages of the
Tested sessions, but at the same time the reduction is not able to answer Reveal
queries for such sessions. The standard way to resolve this is to let the reduction guess
the Tested session, and to embed an instance of a computationally hard problem only
there. However, this incurs a significant security loss. A tight reduction has to be able
to respond to both Test and Reveal queries for every session.

The problem of long-term key reveals. A Corrupt query in typical AKE
security models enables the adversary to obtain the long-term key of certain users. If
we want to avoid a security loss that results from guessing corrupted and non-corrupted
parties, then we must be able to construct a reduction that “knows” valid-looking
long-term keys for all users throughout the security experiment. However, this is a
major difficulty, for instance, in protocols where the long-term keys are key pairs for
a digital signature scheme. The difficulty is that in the security proof we would have
to describe a reduction that is able to extract a solution to a computationally hard
problem from a forged signature, even though it “knows” the signing key and thus is
able to compute a valid signature itself. Hence, in order to obtain a tightly-secure AKE
protocol, one needs to devise a way such that a reduction always knows all secret keys,
yet is able to argue that an adversary is, e.g., not able to forge signatures.

In order to resolve this issue, previous works [BHJ+15, GJ18] constructed signature
schemes based on non-interactive OR-proof systems, which enable a reduction to “know”
one out of two signing keys. It is argued that the adversary will forge a signature
with respect to the other, unknown key with sufficiently high probability. However,
these signature schemes are much less efficient than classical ones, and thus impose a
performance penalty on the protocols.

The problem of ephemeral state reveals. Yet another difficulty arises when the
security model allows ephemeral state reveals. Previous works on tightly-secure AKE
did not consider this very strong security notion at all, therefore we face (and solve)
this problem for the first time. From a high-level perspective, the issue is similar to the
long-term key reveal problem, except that ephemeral states are considered. In order
to achieve tightness, the reduction must be able to output valid-looking states for all
sessions. Note that this includes even Tested sessions, where ephemeral states may be
revealed when parties are not corrupted.
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1.2 Main Contributions

Summarizing the previous paragraphs, we can formulate the following natural questions
related to tightly secure AKE:

Q1: Do there exist implicitly authenticated two-message AKEs with tight SBG security,
state reveals, and weak forward security?

Q2: Do there exist explicitly authenticated two-message AKEs with tight SBG security,
state reveals, and full forward security, with one single signature?

In this work, we answer the two questions to the positive. Following [BR94, CCG+19],
we consider SBG security, allowing adaptive corruptions of long-term secrets, adaptive
reveals of session keys, and multiple adaptive Test queries. Our model also captures
(weak and full) forward security (FS), and prevents key-compromise impersonation
and reflection attacks. In comparison to prior work on tightly-secure key exchange
[BHJ+15, GJ18, CCG+19, DJ20, DG20], we consider a model which additionally allows
to reveal some internal state information.

Our DDH-Based AKE Protocols. Our two protocols instantiated from DDH are
given in Figure 1. AKEwFS,DDH is an implicitly-authenticated two-message protocol
AKEwFS,DDH in the sense of [Kra05]. It requires the exchange of only five group elements
in total, and thus is the first efficient implicitly-authenticated protocol with weak FS
that achieves full tightness.

Our second protocol AKEFS,DDH achieves full FS. Instead of using the standard
“1×KEM+2×SIG” approach, it replaces one of the signatures with a more efficient
MAC and an additional KEM ciphertext, which yields a “2×KEM+1×SIG+1×MAC”
construction. When instantiated at “128-bit security” with the most efficient tightly-
secure signatures of [GJ18],2 the communication complexity is 448 bytes, again with
ephemeral state reveals. In comparison, the previously most efficient tightly and fully
forward-secure protocol with SBG security TLS∗ (which is TLS 1.3 instantiated with
the tightly-secure signature of [GJ18]) requires three messages, the transmission of 704
bytes and does not allow state reveals. See Figure 2 for a comparison of our protocols
with previous works. Note that the communication bottleneck in all full FS protocols is
the number of signatures. For completeness the figure also list previous protocols with
tight MBG security [GJ18, LLGW20].

Generic constructions of AKE from NCKE. Our main technical tool is a
new approach to achieve a tight reduction for authenticated key exchange protocols.
Our starting point is an extension of (receiver) non-committing encryption (NCE)
[CFGN96, Nie02] to non-committing key encapsulation (NCKE) in the multi-user setting
with corruptions. We construct an NCKE scheme in the random oracle model from any
smooth projective hash proof system (HPS) [CS02]. If the HPS’ subset membership
problem (SMP) is hard in the multi-instance setting, then the NCKE scheme is also
tightly secure in our multi-user setting. We provide two such HPS, one from the DDH

2 The signatures of [GJ18] consist of 2 group elements, 4 elements in Zp and 2 hashes in
{0, 1}κ. At “128-bit security” this corresponds to 256 bytes per signature.
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Alice ((a1, a2, sigk ), (A := ga1
1 ga2

2 , vk )) Bob ((b1, b2), B := gb1
1 g

b2
2 )

(x1, x2) $← Z2
p; X := gx1

1 gx2
2

s $← Zp
σ ← Sign(sigk, u) if Vrfy(vk, u, σ) 6= 1 abort

t $← Zp, K := H(context,KA,KB ,KX)
if π 6= F(KB , u, σ, v) abort π := F(KB , u, σ, v)

K := H(context,KA,KB ,KX) K := H(context,KX)

K := H(context,KX)

u = (X, gs1, gs2), σ

v = (gt1, gt2), π

HA(gt1, gt2, (gt1)a1(gt2)a2) = KA = HA(gt1, gt2, At)
HB(gs1, gs2, Bs) = KB = HB(gs1, gs2, (gs1)b1(gs2)b2)

HX(gt1, gt2, (gt1)x1(gt2)x2) = KX = HX(gt1, gt2, Xt)

Figure 1: The two message protocols AKEwFS,DDH (without the gray boxes) and
AKEFS,DDH (including the gray boxes), where K is the resulting session key. We define
context := (A,B,X, vk , gs1, gs2, gt1, gt2, σ, π ). H,HA,HB ,HX and F are hash functions.

assumption, and another one from a subgroup assumption over groups of unknown
order. The construction allows us to address the commitment problem described above.

We give a generic construction of an implicitly authenticated two-message AKE proto-
col AKEwFS with weak forward security from any NCKE scheme, whose security is tightly
based on the multi-user security of the underlying NCKE scheme. Furthermore, we give
a generic construction of an explicitly authenticated two-message AKE protocol AKEFS
with perfect forward security by adding a tightly-secure signature scheme and a message
authentication code (MAC) to our first construction, see Figure 3. Thus, we require
only a single signature which is particularly useful for tightly-secure key exchange, be-
cause known constructions of suitable tightly-secure signature schemes [BHJ+15, GJ18]
have relatively large signatures and replacing one signature with a MAC significantly
improves the computational efficiency and communication complexity of the protocol.3

All these generic constructions leverage NCKE in order to resolve the technical
difficulties in constructing tightly-secure AKE protocols described before.
Handling Ephemeral State Reveals. Our protocols are secure against ephemeral
state reveals. We construct the first tightly-secure protocols to achieve this. Note
that this requires us to deal with the situation that the reduction must “know” valid
ephemeral states for all sessions, even tested sessions. To this end, we encrypt the state
information with a symmetric long-term key. An adversary now needs to query both
long-term secret key and ephemeral state to reveal the secret state information, similarly
to the approach used in the NAXOS protocol [LLM07]. While the idea of achieving
security against ephemeral state reveals by relying on the security of long-term keys
was used before [LLM07, BJS15, Yon12, FSXY12], the approach to simply encrypt the
state is new. It avoids the expensive re-computation of protocol messages required in
3 [LSY+14] showed how to generically avoid signatures in forward-secure AKE protocols, but
at the cost of additional messages.
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Protocol Comm.
(G, {0, 1}κ,Sig) Bytes #Msg. Assump. Model State

Reveal
Sec.
Loss

Protocols with full forward security and explicit authentication

TLS∗ [DJ21, DG21] (2, 4, 2) 704 3 Strong-DH
+ DDH SBG no O(1)

GJ [GJ18] (2, 1, 2) 608 3 DDH MBG no O(1)
LLGW [LLGW20] (3, 0, 2) 608 2 DDH MBG no O(1)
AKEFS,DDH (Fig. 1) (5, 1, 1) 448 2 DDH SBG yes O(1)
Protocols with weak forward security and implicit authentication
HMQV [Kra05] (2, 0, 0) 64 2 CDH SBG yes O(TN2`2)
CCGJJ [CCG+19] (2, 0, 0) 64 2 Strong-DH SBG no O(N)
CCGJJTwin [CCG+19] (3, 0, 0) 96 2 CDH SBG no O(N)
AKEwFS,DDH (Fig. 1) (5, 0, 0) 160 2 DDH SBG yes O(1)

Figure 2: Comparison of AKE protocols over a group G, where N refers to the number
of parties, ` to the number of sessions per party and T is the number of test queries.
TLS∗ refers to the TLS 1.3 handshake, instantiated with the tightly-secure signatures
of [GJ18]. The column Comm. counts the communication complexity of the protocols
in terms of the number of group elements, hashes, and signatures. The column Model
lists the AKE security model and distinguishes between multi-bit guessing (MBG) and
the single-bit-guessing (SBG) security.

HPS
m-SMP

KEM
N -NCKE

AKEwFS
IND-wFS-St

SIG
N -SUF-CMA

AKEFS
IND-FS-St

Section 3 Section 5

+
Section 6

Figure 3: Overview of our transformations, where N is the maximum number of users
in the NCKE security game and in the SUF-CMA security game. The subset membership
problem of HPS is m-fold for m = N · q, where q is the maximum number of challenge
queries in the NCKE security game.

prior generic approaches, which makes it particularly efficient. Also, previous work did
not focus on tightness and it is unclear if a tight proof can be achieved in an even
stronger security model which requires to reveal the randomness.

Our approach does not work generically, e.g., it cannot be applied to the protocols
in [GJ18, CCG+19], so we have to design our protocols such that they are compatible.
This is due to the fact that in both works, the state is a secret DH exponent which
is implicitly determined by rerandomizing the CDH (or DDH) challenge and then is
embedded in multiple sessions. Thus, the reduction is able to extract the solution
independently of which session is the test session, but it also does not know any of the
secret exponents, which the adversary could reveal for non-test sessions.
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1.3 Related Work and Open Problems

Concurrent and independent work of Liu et al. [LLGW20] also proposed a tightly secure
2-message AKE with full forward security. Compared to our protocols, they do not
consider state reveal attacks and their proofs only hold in the MBG security model. Their
AKE construction LLGW follows the well known 1×KEM+2×SIG approach, meaning
that even neglecting the issues with the MBG security model, it is still considerably
less efficient than ours (cf. Fig. 2). The main novelty of [LLGW20] is the new KEM
security notion of (multi-bit) “IND-mCPA with adaptive reveals” that gives them the
handle to prove tight MBG security. It is a natural question whether this KEM security
notion can be adapted to a single-bit notion such that the resulting AKE protocol
achieves tight SBG (rather than MBG) security. This is in particular interesting since
IND-mCPA KEMs with adaptive reveals can be instantiated in the standard model,
whereas our NCKE notion seem to inherently rely on random oracles. More concretely
this raises the question whether (variants of) [LLGW20] can also be proved in the SBG
model, without relying on random oracles.

2 Preliminaries

For an integer n, [n] denotes the set {1, ..., n}. For a set S, s $← S denotes that s is
sampled uniformly and independently at random from S. y ← A(x1, x2, ...) denotes that
on input x1, x2, ... the probabilistic algorithm A returns y. AO denotes that algorithm
A has access to oracle O. We will use code-based games as introduced in [Sho04]. An
adversary is a probabilistic algorithm. Pr[GA ⇒ 1] denotes the probability that the
final output GA of game G running adversary A is 1.

3 Multi-Receiver Non-Committing Key
Encapsulation

In this section, we introduce Multi-Receiver Non-Committing Key Encapsulation
(NCKE). We will use this concept to resolve the “commitment problem” described in
the introduction, which often makes proofs for multi-party protocols with adaptive
corruptions non-tight, as for example AKE protocols.
Syntax. A key encapsulation mechanism KEM = (Gen,Encaps,Decaps) consists of
three algorithms. The key generation algorithm Gen outputs a key pair (pk, sk), where
pk is the public key and sk the secret key. The encapsulation algorithm inputs a public
key pk and outputs a ciphertext c and a key K from the key space K, where c is called
an encapsulation of K. The deterministic decapsulation algorithm inputs the secret key
sk and a ciphertext c and outputs K.

By µ we denote the collision probability of the key generation algorithm. In particular,

Pr[(pk, sk)← Gen, (pk′, sk′)← Gen : pk = pk′] ≤ 2−µ .
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We denote the min-entropy of the encapsulation algorithm Encaps by

γ(pk) := − log max
c∈C

Pr[c = Encaps(pk)] .

We say KEM is γ-spread if for all (pk, sk)← Gen : γ(pk) ≥ γ. This implies that for all
c ∈ C we have Pr[c = Encaps(pk)] ≤ 2−γ .

Security. Following [Nie02], we introduce a security definition of Multi-Receiver Non-
Committing Key Encapsulation (NCKE) for a key encapsulation mechanism KEM in
the random oracle model, i. e., the KEM algorithms have access to a random oracle
H : {0, 1}∗ → {0, 1}κ, indicated by EncapsH . Our definition is relative to a simulator
Sim = (SimGen,SimEncaps,SimHash). The simulated key generation algorithm SimGen
generates a key pair (pk, sk). The simulated encapsulation algorithm SimEncaps takes
both the public and private key and outputs a ciphertext c. The simulated hash
algorithm SimHash inputs the key pair as well as three sets (used for bookkeeping) and
deterministically computes a simulated hash value.

We define the two games NCKEreal and NCKEsim in Figure 4 where we consider
N receivers each holding a key pair (pkn, skn). In the NCKEreal game, the original
Encaps algorithm is used. We give each user an individual hash function Hn such that
keys are computed independently. (In general, this can be implemented by using the
user’s public key and identity as input to the hash function as well, where collisions
have to be considered.) In the NCKEsim game, the SimEncaps algorithm is used to
compute the ciphertexts. Keys are chosen uniformly at random. The adversary may also
adaptively corrupt some receivers. We require that ciphertexts of corrupted receivers
always decapsulate to the key output by Encaps, which is modeled by the SimHash
algorithm. Therefore, if the receiver is corrupted, the algorithm takes sets CK, D and
H, where the first one stores all challenge ciphertexts and keys output to the adversary,
the second one stores all decapsulation queries and the third one stores all hash queries
which have been issued so far. Thus, the SimHash algorithm can answer future queries
based on everything that is known to the adversary. If the receiver is not corrupted,
set C is used instead of CK. This set stores only challenge ciphertexts and thus a hash
value is computed independently of previous challenge keys.

The goal of an adversary A is to distinguish between the real KEM algorithms used
in game NCKEreal and the simulated algorithms used in game NCKEsim. This is captured
in Definition 1. Note that the non-committing property is due to the SimHash algorithm.
In particular, the SimHash algorithm ensures that a (uniformly random) challenge key
can be explained by the corresponding ciphertext generated by SimEncaps as soon as
the receiver is corrupted.

Definition 1 (N -Receiver Non-Committing Key Encapsulation). We define games
NCKEreal and NCKEsim as in Figure 4, where N is the number of users. The simulator
Sim = (SimGen,SimEncaps,SimHash) is defined relative to KEM and is used in NCKEsim.
The advantage of an adversary A against KEM and Sim is defined as

AdvN-NCKE
KEM,Sim(A) :=

∣∣∣Pr[NCKEAreal ⇒ 1]− Pr[NCKEAsim ⇒ 1]
∣∣∣ .
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NCKEreal and NCKEsim

00 for n ∈ [N ]
01 (pkn, skn)← Gen
02 (pkn, skn)← SimGen
03 opened[n] := false
04 CKn := ∅, Cn := ∅, Dn := ∅, Hn := ∅
05 b′ ← AEncaps,Decaps,Open,H1,...,HN (pk1, ..., pkN )
06 return b′

Hn(M) �n ∈ [N ]
07 if ∃h s. t. (M,h) ∈ Hn return h
08 h $← {0, 1}κ

09 if opened[n]
10 h← SimHash(pkn, skn, CKn,Dn,Hn,M)
11 else
12 h← SimHash(pkn, skn, Cn,Dn,Hn,M)
13 Hn := Hn ∪ {(M,h)}
14 return h

Encaps(n ∈ [N ])
15 (c,K)← EncapsHn(pkn)
16 c← SimEncaps(pkn, skn)
17 K $← K
18 CKn := CKn ∪ {(c,K)}
19 Cn := Cn ∪ {(c,⊥)}
20 return (c,K)

Decaps(n ∈ [N ], c)
21 if ∃K s. t. (c,K) ∈ CKn
22 return ⊥
23 K := DecapsHn(skn, c)
24 Dn := Dn ∪ {c}
25 return K

Open(n ∈ [N ])
26 opened[n] := true
27 return skn

Figure 4: Real and simulated game for N -receiver non-committing key encapsulation
in the random oracle model.

When we write NCKE, we mean NCKE-CCA, where the adversary is allowed to access
a decapsulation oracle. Sometimes we will explicitly write NCKE-CCA to differentiate
from NCKE-CPA, where the adversary cannot issue decapsulation queries.

We stress that compared to the standard definition of non-committing encryption in
the random oracle model (e.g., [Nie02]), Definition 1 is for KEMs (rather than encryp-
tion), only considers receiver corruptions (rather than sender and receiver corruptions),
and considers multiple receivers (rather than one single receiver).
Instantiations from Hash Proof Systems. We recall the definition of hash proof
systems by Cramer and Shoup [CS02] and properties defined in [KPSY09].
Smooth Projective Hashing. Let Y and Z be sets and X ⊂ Y a language. Let
Λsk : Y → Z be a hash function indexed with sk ∈ SK, where SK is a set. A hash
function Λsk is projective if there exists a projection µ : SK → PK such that µ(sk) ∈ PK
defines the action of Λsk over X . In particular, for every c ∈ X , Z = Λsk(c) is uniquely
determined by µ(sk) and c. However, there is no guarantee for c ∈ Y \ X and it may
not be possible to compute Λsk(c) from µ(sk) and C. A projective hash function is
k-entropic if for all c ∈ Y \ X it holds that H∞(Λsk(c) | pk) ≥ k, where pk = µ(sk) for
sk $← SK.
Hash Proof System. A hash proof system HPS = (Par,Priv,Pub) consists of three
algorithms. The randomized algorithm Par generates parametrized instances of par =
(group,Z,Y,X ,PK,SK,Λ(·) : Y → Z, µ : SK → PK), where group may contain
additional structural parameters. The deterministic public evaluation algorithm Pub
inputs the projection key pk = µ(sk), c ∈ X and a witness r of the fact that c ∈ X
and returns Z = Λsk(c). The deterministic private evaluation algorithm Priv takes
sk ∈ SK and returns Λsk(c) without knowing a witness. Furthermore, we assume that
µ is efficiently computable and that there are efficient algorithms for sampling c ∈ X
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Gen(par)
00 sk $← SK
01 pk := µ(sk)
02 return (pk, sk)

EncapsH(pk)
03 c $← X with witness r
04 K := H(c,Pub(pk, c, r))
05 return (c,K)

DecapsH(sk, c)
06 K := H(c,Priv(sk, c))
07 return K

Figure 5: Key encapsulation mechanism KEM = (Gen,Encaps,Decaps).

SimEncaps(pk, sk)
00 c $← Y \ X
01 return c

SimHash(pk, sk, E ,D,H,M)
02 (c, Z) := M
03 if ∃K s. t. (c,K) ∈ E and Priv(sk, c) = Z
04 h := K
05 else
06 h $← {0, 1}κ
07 return h

Figure 6: Simulator Sim = (SimGen,SimEncaps,SimHash) for KEM, where SimGen =
Gen. List E is either CK or C.

uniformly together with a witness r, sampling c ∈ Y uniformly and checking membership
in Y.
(m-fold) Subset Membership Problem. We define the m-fold subset membership
problem for HPS which requires to distinguish m ciphertexts uniformly drawn from X
from m ciphertexts uniformly drawn from Y \ X . The advantage of an adversary A is
defined as

Advm−SM
HPS (A) := |Pr[A(Y,X , c1, ..., cm)⇒ 1]− Pr[A(Y,X , c′1, ..., c′m)⇒ 1]| ,

where c1, ..., cm $← X and c′1, ..., c′m $← Y \ X .
N-Receiver NCKE from HPS. We use a k-entropic hash proof system HPS =
(Par,Pub,Priv) with m-fold subset membership problem and a random oracle H :
{0, 1}∗ → {0, 1}κ in order to construct a key encapsulation algorithm KEM and a
simulator Sim as shown in Figures 5 and 6. The encapsulation algorithm Encaps samples
an element c from X and a witness r. It runs the public evaluation algorithm and
computes the key K as H(c,Pub(pk, c, r)). The decapsulation algorithm Decaps uses the
result of the private evaluation algorithm Priv as input to H to compute K. Instead of
sampling an element from X , the SimEncaps algorithm samples an element c uniformly
at random from Y \ X and only returns c. The SimHash algorithm takes as input three
sets E ,D,H, where E ∈ {C, CK}, and the value M = (c, Z) chosen by the adversary. If
there exists a key K such that (c,K) ∈ E (note that for E = C this will never be true)
and the adversary’s input to H satisfies Priv(sk, c) = Z, then the output value h is set
to K.

Theorem 1 (k-entropic HPS with (N · qE)-fold SMP ⇒ N -NCKE). For any N -NCKE
adversary A against KEM and Sim that issues at most qE queries to Encaps, qD queries
to Decaps and at most qH queries to each random oracle Hn for n ∈ [N ], there exists
an adversary B against the (N · qE)-fold subset membership problem of HPS such that

AdvN-NCKE
KEM,Sim(A) ≤ Adv(N ·qE)-SM

HPS (B) + N · qE · qH
2k + N · qE · qD

|Y \ X |
,
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where HPS is k-entropic, Y is the set of all ciphertexts and X is the set of valid
ciphertexts.

Proof. Let A be an adversary against KEM and Sim in the NCKE games. Consider the
sequence of games in Figure 7.
Game G0. This is the original NCKEreal game, hence

Pr[GA0 ⇒ 1] = Pr[NCKEAreal ⇒ 1] .

Game G1. In game G1, the Encaps oracle is modified in a way that it uses the private
evaluation algorithm to compute K in line 22. It holds that Pub(pk, c, r) = Priv(sk, c).
Thus, this does not change the adversary’s view and

Pr[GA1 ⇒ 1] = Pr[GA0 ⇒ 1] .

Game G2. The Encaps oracle now chooses the ciphertext from Y \ X in line 17. We
claim that ∣∣Pr[GA2 ⇒ 1]− Pr[GA1 ⇒ 1]

∣∣ ≤ Adv(N ·qE)-SM
HPS (B) . (1)

In Figure 8, we construct adversary B against the (N · qE)-fold subset membership
problem. B inputs sets Y,X and ciphertexts cn,k, where n ∈ [N ], k ∈ [qE ]. If B’s input
values are elements from X , then B perfectly simulates G1. Otherwise, if the input
elements are from Y \ X , B simulates G2. This yields Equation 1.
Game G3. In game G3, we raise flag BAD in line 19 and abort if the Encaps oracle
chooses a ciphertext that was issued to the Decaps oracle before. As a challenge
ciphertext is chosen uniformly at random from Y \ X , the probability that BAD is
raised for one specific challenge ciphertext is at most qD/|Y \ X |. Union bound over all
challenge ciphertexts yields∣∣Pr[GA3 ⇒ 1]− Pr[GA2 ⇒ 1]

∣∣ ≤ Pr[BAD] ≤ N · qE · qD
|Y \ X |

.

Game G4. In game G4, we use internal hash functions H′n to compute K in line 23.
These are not directly accessible to the adversary and independent of the random oracle
as long as the secret key has not been opened. However, if the adversary opens the
secret key of user n, then it can simply compute the value Z = Priv(skn, c) for any
challenge ciphertext c of that user. This is why we have to patch the random oracle
and output H′n(c, Z) whenever A issues such a query (lines 09 and 10).

The only possibility for A to notice the difference is when it queries Hn on (c, Z =
Priv(skn, c)) before skn is opened, where c is a ciphertext output by Encaps. Here, we
use the fact that HPS is k-entropic and show that∣∣Pr[GA4 ⇒ 1]− Pr[GA3 ⇒ 1]

∣∣ ≤ N · qE · qH
2k .

Using a hybrid argument, we modify the computation of K using function H′n indepen-
dent of the random oracle as long as the adversary does not see the corresponding skn.
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GAMES G0-G5
00 for n ∈ [N ]
01 skn $← SK
02 pkn := µ(skn)
03 opened[n] := false
04 CKn := ∅
05 b′ ← AEncaps,Decaps,Open,H1,...,HN (pk1, ..., pkN )
06 return b′

Hn(c, Z) �n ∈ [N ]
07 if ∃h s. t. (c, Z, h) ∈ Hn return h
08 h $← {0, 1}κ �G0-G3
09 if opened[n] and ∃K s. t. (c,K) ∈ CKn

and Priv(skn, c) = Z �G4-G5
10 h := H ′n(c, Z) �G4
11 h := K �G5
12 else �G4-G5
13 h $← {0, 1}n �G4-G5
14 Hn := Hn ∪ {(c, Z, h)}
15 return h

Encaps(n ∈ [N ])
16 c $← X with withness r �G0-G1
17 c $← Y \ X �G2-G5
18 if c ∈ Dn �G3-G5
19 BAD := true �G3-G5
20 abort �G3-G5
21 K := Hn(c,Pub(pk, c, r)) �G0
22 K := Hn(c,Priv(sk, c)) �G1-G3
23 K := H′n(c,Priv(sk, c)) �G4
24 if ∃K′ s. t. (c,K′) ∈ CKn �G5
25 K := K′ �G5
26 else �G5
27 K $← {0, 1}κ �G5
28 CKn := CKn ∪ {(c,K)}
29 return (c,K)

Decaps(n ∈ [N ], c)
30 if ∃K s. t. (c,K) ∈ CKn
31 return ⊥
32 K := Hn(c,Priv(skn, c))
33 Dn := Dn ∪ {c}
34 return K

Open(n ∈ [N ])
35 opened[n] := true
36 return skn

Figure 7: Games G0-G5 for the proof of Theorem 1. H′n in line 23 is used as an internal
hash function which is not directly accessible to the adversary.

Therefore, we parameterize the hybrids with j, where j ∈ [N · qE ] denotes that K is
replaced in the first j challenge ciphertexts.

In the following, we consider two consecutive hybrids, where the only difference is
that the computation ofK in the j-th query is modified. Let pkn∗ be the public key of the
corresponding user and (c∗,K∗) the challenge ciphertext. In hybrid Hj−1, the adversary
observes (c∗,K∗ = Hn∗(c∗, Z∗)), where c∗ ∈ Y \ X and Z∗ = Priv(skn∗ , c∗). In hybrid
Hj , the key K is computed with H′n∗ independent of Hn∗ assuming that the adversary
has not opened skn∗ . Thus, in order to notice the difference, the adversary must query
Hn∗ on (c∗, Z∗). As for every c ∈ Y \ X , we have that H∞(Priv(skn∗ , c∗) | pkn∗) ≥ k,
we can bound the probability of this event by the number of random oracle queries:∣∣Pr[HAj ⇒ 1]− Pr[HAj−1 ⇒ 1]

∣∣ ≤ qH
2k .

Note that a query (n∗, c) to Decaps, where c 6= c∗, will not reveal any additional
information because the output of Hn∗ will be different anyway.
Game G5. In game G5, the Encaps oracle chooses key K uniformly at random in line
27. If the same ciphertext as in a previous challenge is generated, the key from that
challenge will be used again to maintain consistency (see lines 24 and 25). In addition
to that, the random oracle has to be modified again so that it now outputs the same
K as chosen before in case a secret key has already been opened and Z is computed
correctly (see line 11). The adversary’s view does not change as Hn(c,Priv(skn, c)) = K
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B(Y,X , (cn,k)n∈[N ],k∈[qE ])
00 for n ∈ [N ]
01 skn $← SK
02 pkn := µ(skn)
03 opened[n] := false
04 CKn := ∅
05 cnt[n] := 0
06 b′ ← AEncaps,Decaps,Open,H1,...,HN (pk1, ..., pkN )
07 return b′

Encaps(n ∈ [N ],m)
08 j := cnt[n]++
09 c := cn,j
10 K := Hn(c,Priv(skn, c))
11 return (c,K)

Figure 8: Adversary B against the (N · qE)-fold subset membership problem for the
proof of Theorem 1, where Hn for n ∈ [N ], Decaps and Open are defined as in G1 of
Fig. 7.

for every (c,K) ∈ CKn if skn is opened. If skn is not opened, K is independent of Hn in
both games G4 and G5. Hence,

Pr[GA5 ⇒ 1] = Pr[GA4 ⇒ 1] .

Finally, observe that the last game G5 is the original NCKEsim game. Hence,

Pr[GA5 ⇒ 1] = Pr[NCKEAsim ⇒ 1] .

Collecting all probabilities yields the bound stated in Theorem 1.

We will give two concrete instantiations, one based on the DDH assumption (Section
7.1) and one based on the higher residuosity assumption (Appendix A).

4 Security Model for Two-Message Authenticated
Key Exchange

A two-message key exchange protocol AKE = (GenAKE, InitI,DerR,DerI) consists of four
algorithms which are executed interactively by two parties as shown in Figure 9. We
denote the party which initiates the session by Pi and the party which responds to the
session by Pr. The key generation algorithm GenAKE outputs a key pair (pk, sk) for one
party. The initialization algorithm InitI inputs the initiator’s long-term secret key ski
and the responder’s long-term public key pkr and outputs a message I and a state st.
The responder’s derivation algorithm DerR takes as input the responder’s long-term
secret key skr, the initiator’s long-term public key pki and a message I. It computes a
message R and a session key K. The initiator’s derivation algorithm DerI inputs the
initiator’s long-term secret key ski, the responder’s long-term public key pkr, a message
R and a state st. It outputs a session key K.

Note that in contrast to the initiating party Pi, the responding party Pr will not be
required to save any (secret) state information besides the session key K. The session
key can be derived immediately after receiving the initiator’s message.

Following [HKSU20], we define a game-based security model for authenticated key
exchange using pseudocode. Our models for two different levels of security are given
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Party Pi (pki, ski) Party Pr (pkr, skr)

(I, st)← InitI(ski, pkr)

(R,K)← DerR(skr, pki, I)

K := DerI(ski, pkr, R, st)

I

R

st

Figure 9: Running a key exchange protocol between two parties.

in Figure 10. We consider N parties P1, ...,PN with long-term key pairs (pkn, skn),
n ∈ [N ]. Each session between two parties has a unique identification number sID and
variables which are defined relative to sID:
– init[sID] ∈ [N ] denotes the initiator of the session.
– resp[sID] ∈ [N ] denotes the responder of the session.
– type[sID] ∈ {“In”, “Re”} denotes the session’s view, i. e., whether the initiator or
the responder computes the session key.

– I[sID] denotes the message that was computed by the initiator.
– R[sID] denotes the message that was computed by the responder.
– state[sID] denotes the state information that is stored by the initiator.
– sKey[sID] denotes the session key.

To establish a session between two parties, the adversary is given access to oracles
SessionI and SessionR, where the first one starts a session of type “In” and the second
one of type “Re”. Following [Kra05, LLM07], these oracles also take the intended peer’s
identity as input. In order to complete the initiator’s session, the oracle DerI has to
be queried. Furthermore, the adversary has access to oracles Corrupt,Reveal and
Rev-State to obtain secret information. As the responder can directly compute the
key in a two-message protocol, we only require the initiator to store a state. The state
contains information that is needed to compute the session key when the response is
received, so it will consist of public and private information. We do not require to reveal
the full randomness as in the eCK model [LLM07]. A Rev-State query may be issued
at any time. We use the following boolean values to keep track of which queries the
adversary made:
– corrupted[n] denotes whether the long-term secret key of party Pn was given to the
adversary.

– revealed[sID] denotes whether the session key was given to the adversary.
– revState[sID] denotes whether the state information of that session was given to
the adversary.

– peerCorrupted[sID] denotes whether the peer of the session was corrupted at the
time the session key is computed, which is important for forward security.
The adversary can forward messages between sessions or modify them. By that, we

can define the relationship between two sessions:
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GAMES IND-wFS-Stb and IND-FS-Stb
00 cnt := 0 �session counter
01 S := ∅ �set of test sessions
02 for n ∈ [N ]
03 (pkn, skn)← GenAKE
04 b′ ← AO(pk1, · · · , pkN )
05 for sID∗ ∈ S
06 if Fresh(sID∗) = false
07 return 0 �session not fresh
08 if Valid(sID∗) = false
09 return 0 �no valid attack
10 return b′

SessionR((i, r) ∈ [N ]2, I)
11 cnt ++
12 sID := cnt
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 peerCorrupted[sID] := corrupted[i]
16 (R,K)← DerR(skr, pki, I)
17 (I[sID], R[sID], sKey[sID]) := (I,R,K)
18 return (sID, R)

Test(sID)
19 if sID ∈ S return ⊥ �already tested
20 if sKey[sID] = ⊥ return ⊥
21 S := S ∪ {sID}
22 K∗0 := sKey[sID]
23 K∗1

$← K
24 return K∗b

SessionI((i, r) ∈ [N ]2)
25 cnt ++
26 sID := cnt
27 (init[sID], resp[sID]) := (i, r)
28 type[sID] := “In”
29 (I, st)← InitI(ski, pkr)
30 (I[sID], state[sID]) := (I, st)
31 return (sID, I)

DerI(sID, R)
32 if state[sID] = ⊥
33 return ⊥ �not initialized
34 if sKey[sID] 6= ⊥
35 return ⊥ �no re-use
36 (i, r) := (init[sID], resp[sID])
37 st := state[sID]
38 peerCorrupted[sID] := corrupted[r]
39 K := DerI(ski, pkr, R, st)
40 (R[sID], sKey[sID]) := (R,K)
41 return ε

Reveal(sID)
42 revealed[sID] := true
43 return sKey[sID]

Rev-State(sID)
44 if type[sID] 6= “In” return ⊥
45 revState[sID] := true
46 return state[sID]

Corrupt(n ∈ [N ])
47 corrupted[n] := true
48 return skn

Figure 10: Games IND-wFS-Stb and IND-FS-Stb for AKE, where b ∈ {0, 1}. A has
access to oracles O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,
Test}. Helper procedures Fresh and Valid are defined in Figure 11. If there exists
any test session which is neither fresh nor valid, the game will return 0.

– Matching Session: Two sessions sID, sID′ match if the same parties are involved
(init[sID] = init[sID′] and resp[sID] = resp[sID′]), the messages sent and received
are the same (I[sID] = I[sID′] and R[sID] = R[sID′]) and they are of different types
(type[sID] 6= type[sID′]).

– Partially Matching Session: A session sID′ of type “In” is partially matching to
session sID of type “Re” if the initial messages are the same (I[sID] = I[sID′]).

Finally, the adversary is given access to oracle Test which will return either the session
key of the specified session or a uniformly random key. In our security models, we
allow multiple test queries. We store test sessions in a set S. In general, the adversary
can disclose the complete interaction between two parties by querying the long-term
secret keys, the state information and the session key. However, for each test session,
we require that the adversary does not issue queries such that the session key can be
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Fresh(sID∗)
00 (i∗, r∗) := (init[sID∗], resp[sID∗])
01 M(sID∗) := {sID | (init[sID], resp[sID]) = (i∗, r∗) ∧ (I[sID], R[sID]) = (I[sID∗], R[sID∗])

∧ type[sID] 6= type[sID∗]} �matching sessions
02 if revealed[sID∗] or (∃sID ∈M(sID∗) : revealed[sID] = true)
03 return false �A trivially learned the test session’s key
04 if ∃sID ∈M(sID∗) s. t. sID ∈ S
05 return false �A also tested a matching session
06 return true

Valid(sID∗)
07 (i∗, r∗) := (init[sID∗], resp[sID∗])
08 M(sID∗) := {sID | (init[sID], resp[sID]) = (i∗, r∗) ∧ (I[sID], R[sID]) = (I[sID∗], R[sID∗])

∧ type[sID] 6= type[sID∗]} �matching sessions
09 P(sID∗) := {sID | I[sID] = I[sID∗] ∧ type[sID] = “In” ∧ type[sID] 6= type[sID∗]}

�partially matching sessions
10 for attack ∈ Table 1 Table 2
11 if attack = true return true
12 return false

Figure 11: Helper procedures Fresh and Valid for games IND-wFS-St and IND-FS-St
defined in Figure 10. Procedure Fresh checks if the adversary performed some trivial
attack. In procedure Valid, each attack is evaluated by the set of variables shown
in Table 1 (IND-wFS-St) or Table 2 (IND-FS-St) and checks if an allowed attack was
performed. If the values of the variables are set as in the corresponding row, the attack
was performed, i. e., attack = true, and thus the session is valid.

trivially computed. We define the properties of freshness and validity which all test
sessions have to satisfy:
– Freshness: A (test) session is called fresh if the session key was not revealed.

Furthermore, if there exists a matching session, we require that this session’s key is
not revealed and that this session is not also a test session.

– Validity: A (test) session is called valid if it is fresh and the adversary performed
any attack which is defined in the security model. We capture this with attack tables
(cf. Tables 1 and 2). A description of how to read the tables is given below.

Attack Tables. All attacks are defined using variables to indicate which queries the adver-
sary may (not) make. We consider three dimensions covering all possible combinations
of reveal queries the adversary can make:
– whether the test session is on the initiator’s (type[sID∗] =“In”) or the responder’s
side (type[sID∗] =“Re”),

– all combinations of long-term secret key and state reveals (corrupted and revState
variables), also taking into account when a corruption happened (peerCorrupted),

– whether the adversary acted passively (matching session), partially active (partially
matching session) or actively (no matching session).

This yields a full table of 24 attacks (cf. Table 3 in Appendix B), in particular capturing
key compromise impersonation (KCI) and maximal exposure (MEX) attacks. An attack
was performed if the variables are set to the corresponding values in the table. However,
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(0) multiple partially matching sessions – – – – – – – > 1
(1∨2) (long-term, long-term) – – – F F 1 – –
(7∨8) (state, long-term) F – – – – 1 – –
(10) (long-term, long-term) – – “Re” F n/a 0 F 1
(16) (state, long-term) F – “Re” F n/a 0 – 1
(19) (state, state) F F “In” – n/a 0 n/a 0
(21) (long-term, state) – F “In” F n/a 0 n/a 0
(24) (state, long-term) F – “Re” F n/a 0 n/a 0

Table 1: Distilled table of attacks for wFS adversaries against two-message protocols.
This table is obtained from the full table of attacks by using that responders do not
have a state and that we are considering weak forward security. The numbering of
attacks is inherited from the full table. An attack is regarded as an AND conjunction
of variables with specified values as shown in the each line, where “–” means that this
variable can take arbitrary value. F means “false” and “n/a” indicates that there is no
state which can be revealed as no (partially) matching session exists.

when considering two-message protocols, where the responder’s side does not have a
state, and we only consider weak forward security, some of the attacks are redundant.
Thus, we obtain distilled tables. We exclude trivial attacks, e.g., the generic attack
on two-message AKE protocols with state-reveals described in [LS17]. Therefore, the
adversary is not allowed to obtain the state of a partially matching session. Also note
that by definition, a partially matching session for a two-message protocol can only be
of type “Re”. Table 1 is the distilled table used for the IND-wFS-St security game and
Table 2 is used for the IND-FS-St security game. A more detailed justification on how
the distilled tables are obtained by pointing out trivial attacks is given in Appendix
B. Note that the numbering of attacks in the distilled tables is inherited from the full
table.

However, if the protocol does not use appropriate randomness, it should not be
considered secure in our model. Thus, if the adversary is able to create more than one
(partially) matching session to a test session, it may also run a trivial attack. We model
this in row (0) of Tables 1 and 2.
Example. If the test session is an initiating session (type[sID∗] =“In”), the state was
not revealed (revState[sID∗] = false) and there is a matching session (|M(sID∗)| = 1),
then row (1∨2) will evaluate to true. In this scenario, the adversary is allowed to query
both long-term secret keys.

For all test sessions, at least one attack has to evaluate to true. Then, the adversary
wins if it distinguishes the session keys from uniformly random keys which it obtains
through queries to the Test oracle.
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(0) multiple partially matching sessions – – – – – – – – > 1
(1∨2) (long-term, long-term) – – – – F F 1 – –
(7∨8) (state, long-term) F – – – – – 1 – –
(10) (long-term, long-term) – – F “Re” F n/a 0 F 1
(16) (state, long-term) F – – “Re” F n/a 0 – 1
(17) (long-term, long-term) – – F “In” F n/a 0 n/a 0
(18) (long-term, long-term) – – F “Re” F n/a 0 n/a 0
(23) (state, long-term) F – F “In” – n/a 0 n/a 0

Table 2: Distilled table of attacks for full FS adversaries against two-message protocols.
This table is obtained from the full table of attacks by removing redundant rows and
using that responders do not have a state. The numbering of attacks is inherited from
the full table. An attack is regarded as an AND conjunction of variables with specified
values as shown in the each line, where “–” means that this variable can take arbitrary
value. F means “false” and “n/a” indicates that there is no state which can be revealed
as no (partially) matching session exists.

Definition 2 (Key Indistinguishability of AKE). We define games IND-wFS-Stb and
IND-FS-Stb for b ∈ {0, 1} as in Figures 10 and 11. The advantage of an adversary A
against AKE in these games is defined as

AdvIND-wFS-St
AKE (A) :=

∣∣∣Pr[IND-wFS-StA1 ⇒ 1]− Pr[IND-wFS-StA0 ⇒ 1]
∣∣∣ and

AdvIND-FS-St
AKE (A) :=

∣∣∣Pr[IND-FS-StA1 ⇒ 1]− Pr[IND-FS-StA0 ⇒ 1]
∣∣∣ .

When proving the security of a protocol, the success probability for each attack
strategy listed in the corresponding table will have to be analyzed, thus showing that
independently of which queries the adversary makes, it cannot distinguish the session
key from a uniformly random key.

4.1 Relation to other Definitions

In this section, we will refer to the most widely used security definitions for authenticated
key exchange protocols. In the first place, these include the CK model [CK01] and the
stronger definition used for the HMQV protocol (CK+) in [Kra05], the eCK model
[LLM07] and the strengthened version of [CF12], the definitions given in [JKSS12] and
[BHJ+15] which are both extensions of the BR model [BR94], and the definition of
IND-AA security in [HKSU20]. In [Cre09, Cre11], Cremers showed that the CK, CK+
und eCK model are incomparable. Thus, we will not do a formal comparison of security
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models, but only point out similarities and differences between our definition and the
definitions listed above.
Party Corruption. We allow the adversary to corrupt a party which means that
it will obtain that party’s long-term secret key as in the eCK model and the models
given in [JKSS12, BHJ+15, HKSU20]. In contrast, a corrupt query in the CK and CK+
model will reveal all information in the memory of that party, i. e., long-term secrets
and session-specific information.
State-Reveals. Our model only allows state-reveal queries on initiating sessions
because the initiator has to wait for the response to compute the session key. Thus, the
state contains all that information that is needed to derive the session key as soon as
the responder’s message is received. The responder can directly compute the session
key and does not have to store other information. The eCK model explicitly defines
the state as the randomness that is used in the protocol. In the CK model, it is not
clear which information is included in the state, but it is left to be specified by the
AKE protocol itself. Other models such as [JKSS12], its extension given in [BHJ+15]
and the one used in [CCG+19] do not allow state-reveals at all.

Here, we want to emphasize that in particular all previous work on tight AKE does
not consider state reveals and we are the first ones to address this problem.
(Weak) Forward Security. Following Krawczyk [Kra05], we specify two levels of
forward security. IND-wFS-St models weak forward security, whereas IND-FS-St models
full forward security. The first one is intended for 2-message protocols with implicit
authentication, as those cannot achieve full forward security [Kra05]. The second one is
intended for protocols with explicit authentication. With those definitions, we capture
the same properties as the most common security models given in [CK01, Kra05, LLM07,
JKSS12, BHJ+15], where some of them only define either weak or full forward security
depending on whether they consider implicitly or explicitly authenticated protocols.
Matching Sessions and Partnering. As most security models, ours use the concept
of matching sessions to define a relation between two sessions. Following Cremer and
Feltz [CF12], we additionally use the term of origin (or partially matching) sessions,
which refers to a relaxation of the definition of matching sessions. The concept of
origin sessions is used for full forward security, in particular we need this to handle
the no-match attack described by Li and Schäge [LS17], where two sessions compute
the same session key but do not have matching conversations. Recent works such as
[GJ18, CCG+19] take up the approach of origin sessions and oracle partnering based
on session keys as additional requirement.
On registering corrupt keys. Some security models for AKE allow the adversary
also to register adversarially-generated keys, this holds in particular for previous works
considering tightly-secure key exchange [BHJ+15, GJ18, CCG+19]. Technically this
makes the security model strictly stronger, as one can easily construct contrived protocols
that are insecure with adversarially-registered keys, but secure without.

However, in the actual security proofs in [BHJ+15, GJ18, CCG+19], adversarially-
registered keys are treated no differently than corrupted keys. We chose to keep model,
security proofs and notation as simple as possible (it is already complex enough, anyway),
and thus omitted this query. However, it is straightforward to extend our model with it,
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and the proofs need not to be changed. Whenever the adversary registers a new key, it
would immediately be marked as “corrupted” (just like in [BHJ+15, GJ18, CCG+19]).
Apart from that, no additional changes to the proofs are required, since the proofs deal
with all corrupted keys in the same way, regardless of their distribution or whether they
are generated by the experiment or an external entity. We also do not require a proof
of knowledge of the corrensponding secret key for the registration, or a proof that the
registered public key is valid in any sense.

5 AKE with Weak Forward Security
In this section, we show how to build an implicitly authenticated AKE protocol using
the concept of non-committing key encapsulation.

In particular, from two key encapsulation mechanisms KEMCPA = (GenCPA,EncapsCPA,
DecapsCPA) and KEMCCA = (GenCCA,EncapsCCA,DecapsCCA), we construct a two-message
authenticated key exchange protocol AKEwFS = (GenAKE, InitI,DerR,DerI) as shown in
Figures 12 and 13. W.l.o.g. KEMCPA, KEMCCA, AKEwFS have identical key space K.
Each party holds a long-term key pair (pk, sk) for KEMCCA and a symmetric key k to
encrypt the secret state information which has to be stored by the initiating party.
State encryption protects against state attacks and is implemented using a symmetric
encryption scheme defined as Ek(st′) := (IV,G(k, IV ) ⊕ st′) for a random nonce IV .
Here G : {0, 1}∗ → {0, 1}d is a random oracle and d is an integer denoting the maximum
bit length of the unencrypted state st′. The protocol uses an additional cryptographic
hash function H : {0, 1}∗ → K to output the session key.

Party Pi (pki, (ski, ki)) Party Pr (pkr, skr)

(p̃k, s̃k)← GenCPA

(cr,Kr)← EncapsCCA(pkr)
Kr := DecapsCCA(skr, cr)
(c̃, K̃)← EncapsCPA(p̃k)

(ci,Ki)← EncapsCCA(pki)

K̃ := DecapsCPA(s̃k, c̃) context := (pki, pkr, p̃k, ci, cr, c̃)
Ki := DecapsCCA(ski, ci) K := H(context,Ki,Kr, K̃)

context := (pki, pkr, p̃k, ci, cr, c̃)
K := H(context,Ki,Kr, K̃)

I := (p̃k, cr)

R := (c̃, ci)

st

Figure 12: Visualization: Running protocol AKEwFS between two parties.

The initiating party generates an ephemeral key pair for KEMCPA, then runs the
EncapsCCA algorithm on the peer’s public key to output a ciphertext cr and a key Kr

and sends the ephemeral public key and cr to the intended receiver. All values are stored
temporarily and encrypted as described above, as they will later be needed to compute
the session key. The responding party uses its secret key skr to compute key Kr from cr.
Next, it runs the EncapsCPA algorithm on the received ephemeral public key to compute
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GenAKE
00 (pk, sk)← GenCCA
01 k $← {0, 1}κ
02 return (pk′, sk′) := (pk, (sk, k))

InitI((ski, ki), pkr)
03 (p̃k, s̃k)← GenCPA
04 (cr,Kr)← EncapsCCA(pkr)
05 IV $← {0, 1}κ

06 st′ := (p̃k, s̃k, cr,Kr)
07 st := (IV,G(ki, IV )⊕ st′)
08 return ((p̃k, cr), st)

DerR((skr, kr), pki, (p̃k, cr))
09 Kr := DecapsCCA(skr, cr)
10 (c̃, K̃)← EncapsCPA(p̃k)
11 (ci,Ki)← EncapsCCA(pki)
12 context := (pki, pkr, p̃k, ci, cr, c̃)
13 K := H(context,Ki,Kr, K̃)
14 return ((c̃, ci),K)

DerI((ski, ki), pkr, (c̃, ci), st)
15 (IV, ψ) := st
16 (p̃k, s̃k, cr,Kr) := G(ki, IV )⊕ ψ
17 K̃ := DecapsCPA(s̃k, c̃)
18 Ki := DecapsCCA(ski, ci)
19 context := (pki, pkr, p̃k, ci, cr, c̃)
20 K := H(context,Ki,Kr, K̃)
21 return K

Figure 13: Authenticated key exchange protocol AKEwFS from KEMCPA and KEMCCA.
Lines written in purple color are only used to encrypt the state.

a ciphertext c̃ and a key K̃ and then the EncapsCCA algorithm on the initiator’s public
key to output ci and Ki. It sends both ciphertexts to the initiating party and computes
the session key evaluating the hash function H on all public context and the three
shared keys Kr, Ki and K̃. The initiator retrieves the secret state information and
computes Ki and K̃ from ci and c̃. Now, it can also establish the session key.

Theorem 2 (KEMCPA NCKE-CPA + KEMCCA NCKE-CCA ROM⇒ AKEwFS IND-wFS-St).
For any IND-wFS-St adversary A against AKEwFS with N parties that establishes at
most S sessions and issues at most T queries to the test oracle Test, qG queries to ran-
dom oracle G and at most qH queries to random oracle H, there exists an N -NCKE-CCA
adversary B against KEMCCA and SimCCA and an S-NCKE-CPA adversary C against
KEMCPA and SimCPA such that

AdvIND-wFS-St
AKEwFS

(A) ≤ 2 ·
(

AdvN-NCKE-CCA
KEMCCA,SimCCA

(B) + AdvS-NCKE-CPA
KEMCPA,SimCPA

(C)
)

+ T ·
(
qG
2κ + qH

|K|

)
+ N2 ·

(
1

2µCCA
+ 1

2κ

)
+ S2 ·

(
1

2µCPA
+ 1

2γCCA
+ 1

2γCPA
+ 1

2κ

)
+ 2S · qG

22κ ,

where SimCCA and SimCPA are the simulators from the NCKE experiments, µCCA and
µCPA are the collision probability of the key generation algorithms GenCCA and GenCPA,
γCCA and γCPA are the spreadness parameters of the encapsulation algorithms EncapsCCA
and EncapsCPA and κ is a security parameter. The running times of B and C consist
essentially of the time required to execute the security experiment with the adversary
once, plus a minor number of additional operations (including bookkeeping, lookups
etc.).

Proof. Let A be an adversary against IND-wFS-St security of AKEwFS, where N is the
number of parties, S is the maximum number of sessions that A establishes and T is
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the maximum number of test queries. Consider the sequence of games in Figures 14
and 15.
Games G0,b . These are the original IND-wFS-Stb games. In order to exclude collisions,
we implicitly assume that all key pairs, long-term keys as well as ephemeral keys
generated by GenCCA and GenCPA, and all ciphertexts output by the EncapsH

CCA and
EncapsH̃

CPA algorithms are distinct. (If such a collision happens at any time in the game,
we would abort. However, for sake of readability we do not explicitly write that in the
code of games G0,b .)

We consider this in our bound. Therefore, let µCCA and µCPA be the collision
probabilities of the key generation algorithms GenCCA and GenCPA and let γCCA and
γCPA be the spreadness parameters of KEMCCA and KEMCPA. Then by union bound and
the birthday bound, the upper bound for key collisions is N2/2µCCA + S2/2µCPA and for
ciphertext collisions S2/2γCCA + S2/2γCPA , as we have N parties, at most S sessions with
at most one ephemeral key pair and at most two ciphertexts. We also assume that
values kn and IV are distinct, which adds the additional term N2/2κ + S2/2κ, where κ
is the bit length of kn and IV .

We additionally store the state of a session sID in plaintext in variable state′[sID]
(line 59, Fig. 14) which is directly accessed in DerI, instead of decrypting the state.
This is only conceptual. For bookkeeping, we introduce the two sets C and CK from the
NCKE-CCA game in lines 35, 36 (Fig. 15) and 51, 52 (Fig. 14). In total, we have

|Pr[IND-wFS-StA1 ⇒ 1]− Pr[IND-wFS-StA0 ⇒ 1]| ≤
∣∣Pr[GA0,1 ⇒ 1]− Pr[GA0,0 ⇒ 1]

∣∣
+ N2 ·

(
2−µCCA + 2−κ

)
+ S2 ·

(
2−µCPA + 2−γCCA + 2−γCPA + 2−κ

)
. (2)

In the following, we want to use the property of receiver non-committing key encapsula-
tion of KEMCCA. Therefore, we use the simulator SimCCA = (SimGenCCA,SimEncapsCCA,
SimHashCCA) which is defined relative to KEMCCA.
Games G1,b . In games G1,b , we use the SimGenCCA algorithm to generate long-term
key pairs (pkn, skn) in line 04 (Fig. 14). SessionI uses the SimEncapsCCA algorithm to
compute cr in line 49 and draws a random key Kr in line 50. To maintain consistency,
challenges are saved in line 52 and Kr is retrieved in SessionR (line 28, Fig. 15) when
the same cr is issued. The same is done for ciphertexts ci and keys Ki in SessionR:
SimEncapsCCA is used to generate ci (line 33, Fig. 15), Ki is drawn uniform at random
(line 34) and both are saved and retrieved (line 36, Fig. 15 and line 72, Fig. 14).
Furthermore, the SimHashCCA algorithm is used in random oracles Hn, where n ∈ [N ].
In case party n is corrupted, i. e., skn is known to A, we call SimHashCCA with set CKn,
otherwise with set Cn.

For b ∈ {0, 1}, we construct adversaries Bb against N -NCKE-CCA security of KEMCCA
in Figure 16. Bb inputs long-term public keys pk1, ..., pkN and has access to oracles
Encaps,Decaps and Open as well as random oracles H′n, where n ∈ [N ]. Bb generates
N symmetric keys kn which are part of the long-term secret key and forwards its input
public keys to A.

If A queries SessionI, Bb generates an ephemeral key pair (p̃k, s̃k). Next, Bb calls
Encaps on party r in line 35. As described before, challenges are saved and retrieved
when ciphertexts match. If they do not match which means that cr issued to SessionR

137



T. Jager, E. Kiltz, D. Riepel, S. Schäge

GAMES G0,b -G4,b
00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (pkn, skn)← GenCCA �G0
04 (pkn, skn)← SimGenCCA �G1-4
05 kn

$← {0, 1}κ
06 (pk′n, sk′n) := (pkn, (skn, kn))
07 b′ ← AO(pk′1, ..., pk′N )
08 for sID∗ ∈ S
09 if Fresh(sID∗) = false return 0
10 if Valid(sID∗) = false return 0
11 return b′

SessionR((i, r) ∈ [N ]2, I)
12 cnt ++
13 sID := cnt
14 (init[sID], resp[sID]) := (i, r)
15 type[sID] := “Re”
16 (p̃k, cr) := I

17 (c̃, K̃)← EncapsH̃sID
CPA (p̃k) �G0-2

� simulate (c̃, K̃) when p̃k comes from SessionI:
18 if ∃sID′ s. t. state′[sID′] = (p̃k, · , · , · ) �G3-4

19 ( · , s̃k, · , · ) := state′[sID′] �G3-4

20 c̃← SimEncapsCPA(p̃k, s̃k) �G3-4

21 K̃ $← K �G3-4

22 C̃sID′ := C̃sID′ ∪ {(c̃,⊥)} �G3-4

23 C̃KsID′ := C̃KsID′ ∪ {(c̃, K̃)} �G3-4
24 else �G3-4

25 (c̃, K̃)← EncapsH̃sID
CPA (p̃k) �G3-4

26 Kr := DecapsHr
CCA(skr, cr) �G0

� retrieve Kr when cr used before:
27 if ∃K′r s. t. (cr,K′r) ∈ CKr �G1-4
28 Kr := K′r �G1-4
29 else �G1-4
30 Kr := DecapsHr

CCA(skr, cr) �G1-4
31 Dr := Dr ∪ {cr} �G1-4
32 (ci,Ki)← EncapsHi

CCA(pki) �G0
� simulate (ci,Ki):

33 ci ← SimEncapsCCA(pki, ski) �G1-4
34 Ki

$← K �G1-4
35 Ci := Ci ∪ {(ci,⊥)}
36 CKi := CKi ∪ {(ci,Ki)}
37 context := (pki, pkr, p̃k, ci, cr, c̃)
38 K := H(context,Ki,Kr, K̃)
39 R := (c̃, ci)
40 (I[sID], R[sID], sKey[sID]) := (I, R,K)
41 return (sID, R)

SessionI((i, r) ∈ [N ]2)
42 cnt ++
43 sID := cnt
44 (init[sID], resp[sID]) := (i, r)
45 type[sID] := “In”
46 (p̃k, s̃k)← GenCPA �G0-2

47 (p̃k, s̃k)← SimGenCPA �G3-4
48 (cr,Kr)← EncapsHr

CCA(pkr) �G0
� simulate (cr,Kr):

49 cr ← SimEncapsCCA(pkr, skr) �G1-4
50 Kr

$← K �G1-4
51 Cr := Cr ∪ {(cr,⊥)}
52 CKr := CKr ∪ {(cr,Kr)}
53 I := (p̃k, cr)
54 IV $← {0, 1}κ

55 st′ := (p̃k, s̃k, cr,Kr)
56 st := (IV,G(ki, IV )⊕ st′) �G0-1
57 st := (IV,⊥) �G2-4
58 (I[sID]) := (I, st)
59 state′[sID] := st′
60 return (sID, I)
DerI(sID, R)
61 if state[sID] = ⊥ or sKey[sID] 6= ⊥ return ⊥
62 (i, r) := (init[sID], resp[sID])
63 (p̃k, s̃k, cr,Kr) := state′[sID]
64 (c̃, ci) := R

65 K̃ := DecapsH̃sID
CPA (s̃k, c̃) �G0-2

� retrieve K̃ when c̃ used before:
66 if ∃K̃′ s. t. (c̃, K̃′) ∈ C̃KsID �G3-4

67 K̃ := K̃′ �G3-4
68 else �G3-4

69 K̃ := DecapsH̃sID
CPA (s̃k, c̃) �G3-4

70 Ki := DecapsHi
CCA(ski, ci) �G0

� retrieve Ki when ci used before:
71 if ∃K′i s. t. (ci,K′i) ∈ CKi �G1-4
72 Ki := K′i �G1-4
73 else �G1-4
74 Ki := DecapsHi

CCA(ski, ci) �G1-4
75 Di := Di ∪ {ci} �G1-4

76 context := (pki, pkr, p̃k, ci, cr, c̃)
77 K := H(context,Ki,Kr, K̃)
78 (R[sID], sKey[sID]) := (R,K)
79 return ε

H(x)
80 if ∃K s. t. (x,K) ∈ H return K
81 K $← K
82 H := H ∪ {(x,K)}
83 return K

Figure 14: Games G0,b-G4,b for the proof of Theorem 2. A has access to oracles
O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,Test,G,H,H1, ...,

HN , H̃1, ..., H̃S}. Reveal and Corrupt are defined as in the original IND-wFS-St game
(Fig. 10). Rev-State, Test, H̃sID for sID ∈ [S] and Hn for n ∈ [N ] are defined in
Fig. 15.
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Rev-State(sID)
00 if revState[sID] = true
01 return state[sID]
02 if type[sID] 6= “In” return ⊥
03 revState[sID] := true
04 (IV,⊥) := state[sID] �G2-4
05 i := init[sID] �G2-4
06 if corrupted[i] �G2-4
07 state[sID] := (IV,G(ki, IV )⊕ state′[sID]) �G2-4
08 else if ∃y s. t. (ki, IV, y) ∈ G �G2-4
09 BAD := true �G2-4
10 abort �G2-4
11 else �G2-4
12 ψ $← {0, 1}d �G2-4
13 state[sID] := (IV, ψ) �G2-4
14 return state[sID]

G(k, IV )
15 if ∃k, IV s. t. (k, IV, y) ∈ G
16 return y
17 y $← {0, 1}d �G0-1
18 if ∃i s. t. k = ki and ∃(sID, ψ)

s. t. state[sID] = (IV, ψ) ∧
revState[sID] = true �G2-4

19 y := ψ ⊕ state′[sID] �G2-4
20 else �G2-4
21 y $← {0, 1}d �G2-4
22 G := G ∪ {(k, IV, y)}
23 return y

Hn(M) �n ∈ [N ]
24 if ∃h s. t. (M,h) ∈ Hn return h
25 h $← {0, 1}κ �G0
26 if corrupted[n] �G1-4
27 h ← SimHashCCA(pkn, skn, CKn,Dn,Hn,M)
�G1-4
28 else �G1-4
29 h← SimHashCCA(pkn, skn, Cn,Dn,Hn,M) �G1-4
30 Hn := Hn ∪ {(M,h)}
31 return h

H̃sID(M) �sID ∈ [S]
32 if ∃h s. t. (M,h) ∈ H̃sID return h
33 h $← {0, 1}κ �G0-2
34 if type[sID] = “In” �G3-4

35 (p̃k, s̃k, · , · , · ) := state′[sID] �G3-4
36 i := init[sID] �G3-4
37 if revState[sID] and corrupted[i] �G3-4

38 h← SimHashCPA(p̃k, s̃k, C̃KsID, H̃sID,M) �G3-4
39 else �G3-4

40 h← SimHashCPA(p̃k, s̃k, C̃sID, H̃sID,M) �G3-4
41 else �G3-4
42 h $← {0, 1}κ �G3-4

43 H̃sID := H̃sID ∪ {(M,h)}
44 return h

Test(sID)
45 if sID ∈ S return ⊥
46 S := S ∪ {sID}
47 if sKey[sID] = ⊥ return ⊥
48 K∗0 := sKey[sID] �G0-3
49 K∗0

$← K �G4
50 K∗1

$← K
51 return K∗b

Figure 15: Oracles Rev-State, G, Hn for n ∈ [N ], H̃sID for sID ∈ [S] and Test for
games G0,b-G4,b in Figure 14.

is new, Decaps is queried to receive the corresponding key Kr in line 19. Next, Bb
calls the Encaps oracle on party i (line 20) and in DerI key Ki is retrieved (line 50)
or Decaps is queried (line 52).

If A queries Corrupt on party n, Bb queries Open to obtain skn and outputs both
skn and kn. Queries to a random oracle Hn are forwarded to H′n.

If Bb is in the NCKE-CCAreal game, it perfectly simulates G0,b . Otherwise, if Bb is in
the NCKE-CCAsim game, it perfectly simulates G1,b . We have∣∣Pr[GA1,b ⇒ 1]− Pr[GA0,b ⇒ 1]

∣∣ =
∣∣∣Pr[NCKE-CCABbsim ⇒ 1]− Pr[NCKE-CCABbreal ⇒ 1]

∣∣∣
= AdvN-NCKE-CCA

KEMCCA,SimCCA
(Bb) (3)

Instead of using the algorithms GenCPA and EncapsCPA, we now also want to use the
simulator SimCPA = (SimGenCPA,SimEncapsCPA,SimHashCPA) for the ephemeral keys
and ciphertexts. However, we first introduce an intermediate game which moves the
encryption of the state to the Rev-State oracle. We do this to prepare the reduction
to NCKE-CPA security, where s̃k will not be available and thus the state cannot be

139



T. Jager, E. Kiltz, D. Riepel, S. Schäge

BbEncaps,Decaps,Open,H′1,...,H
′
N (pk1, ..., pkN )

00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 kn

$← {0, 1}κ
04 (pk′n, sk′n) := (pkn, (⊥, kn))
05 b′ ← AO(pk′1, ..., pk′N )
06 for sID∗ ∈ S
07 if Fresh(sID∗) = false return 0
08 if Valid(sID∗) = false return 0
09 return b′

SessionR((i, r) ∈ [N ]2, I)
10 cnt ++
11 sID := cnt
12 (init[sID], resp[sID]) := (i, r)
13 type[sID] := “Re”
14 (p̃k, cr) := I

15 (c̃, K̃)← EncapsH̃sID
CPA (p̃k)

16 if ∃K′r s. t. (cr,K′r) ∈ CKr
17 Kr := K′r
18 else
19 Kr := Decaps(r, cr)
20 (ci,Ki)← Encaps(i)
21 CKi := CKi ∪ {(ci,Ki)}
22 context := (pki, pkr, p̃k, ci, cr, c̃)
23 K := H(context,Ki,Kr, K̃)
24 R := (c̃, ci)
25 (I[sID], R[sID], sKey[sID]) := (I,R,K)
26 return (sID, R)

Corrupt(n ∈ [N ])
27 corrupted[n] := true
28 skn := Open(n)
29 sk′n := (skn, kn)
30 return sk′n

SessionI((i, r) ∈ [N ]2)
31 cnt ++
32 sID := cnt
33 (init[sID], resp[sID], type[sID]) := (i, r, “In”)
34 (p̃k, s̃k)← GenCPA
35 (cr,Kr)← Encaps(r)
36 CKr := CKr ∪ {(cr,Kr)}
37 I := (p̃k, cr)
38 IV $← {0, 1}κ

39 st′ := (p̃k, s̃k, cr,Kr)
40 st := (IV,G(ki, IV )⊕ st′)
41 (I[sID], state[sID], state′[sID]) := (I, st, st′)
42 return (sID, I)

DerI(sID, R)
43 if state[sID] = ⊥ or sKey[sID] 6= ⊥
44 return ⊥
45 (i, r) := (init[sID], resp[sID])
46 (p̃k, s̃k, cr,Kr) := state′[sID]
47 (c̃, ci) := R

48 K̃ := DecapsH̃sID
CPA (s̃k, c̃)

49 if ∃K′i s. t. (ci,K′i) ∈ CKi
50 Ki := K′i
51 else
52 Ki := Decaps(i, ci)
53 context := (pki, pkr, p̃k, ci, cr, c̃)
54 K := H(context,Ki,Kr, K̃)
55 (R[sID], sKey[sID]) := (R,K)
56 return ε

Hn(M) �n ∈ [N ]
57 if ∃h s. t. (M,h) ∈ Hn return h
58 h← H′n(M)
59 Hn := Hn ∪ {(M,h)}
60 return h

Figure 16: Adversaries Bb against N -NCKE-CCA for the proof of Eqn. (3). A has
access to oracles O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,

Test,G,H, H̃1, ...H̃S ,H1, ...,HN}, where Reveal,Rev-State,Test,H and H̃sID for
sID ∈ [S] are defined as in Figure 14 resp. 15. Lines written in blue color highlight how
the adversary simulates G0,b and interpolates to G1,b .

computed in the first place. This means we first delay the computation of the state
as long as possible in games G2,b and then in games G3,b the simulator will finally be
used.

Games G2,b . Here, we move the encryption of the state from SessionI (line 56, Fig. 14)
to the Rev-State oracle. When Rev-State is queried, we check if the initiator i is
corrupted in line 06 and honestly compute the state because then the adversary can
simply make the same computation. Next, we check if the adversary already made a
query to G, where (ki, IV ) are as in the corresponding session. If this is the case, we
raise flag BAD in line 09 and abort. Otherwise, we choose a random string ψ in line 12
and return this value. Line 00 ensures that answers will be consistent when Rev-State
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is queried twice on the same sID. However, we have to patch G for the case that A
issues a query with the correct symmetric key ki such that the random value ψ decrypts
correctly. Note that if BAD is not raised, the adversary’s view is the same in games
G2,b and G1,b . As BAD implies that G is queried on any correct pair (ki, IV ) although
IV ∈ {0, 1}κ is unknown and ki ∈ {0, 1}κ is also unknown because otherwise the state
would have been computed honestly in line 07, we have∣∣Pr[G2,b ⇒ 1]− Pr[G1,b ⇒ 1]

∣∣ ≤ Pr[BAD] ≤ S · qG
22κ .

Games G3,b . In games G3,b , SessionI uses the SimGenCPA algorithm to generate
ephemeral key pairs (p̃k, s̃k) in line 47 (Fig. 14). In lines 19-23 (Fig. 15), we first recover
the ephemeral secret key s̃k from the state of the corresponding initiating session if the
ephemeral public key specified in I was output by SessionI, i. e., it was not chosen by
the adversary. Next, the SimEncapsCPA algorithm is used to compute c̃ and we draw
a random key K̃. To maintain consistency, we save challenges to restore K̃ later in
line 67 (Fig. 14) if the same c̃ is queried to DerI. Furthermore, we use the SimHashCPA
algorithm in random oracles H̃sID, but only for those sessions that choose their own
ephemeral key pair (p̃k, s̃k) in SessionI as explained above. In particular, we first check
if sID is a session of type “In” in line 34 (Fig. 15). In case the state of that session is
revealed and the initiator is corrupted, we call SimHashCPA with set C̃KsID, otherwise
with set C̃sID.

For b ∈ {0, 1}, we construct adversaries Cb against S-NCKE-CPA security of KEMCPA
in Figures 17 and 18. Cb inputs S ephemeral public keys p̃k1, ..., p̃kS and has access to
oracles Encaps, Open and random oracles H̃′s, where s ∈ [S].

If A queries SessionI, Cb computes (cr,Kr) and sets p̃k to p̃ksID in line 38 (Fig. 17).
Note that it cannot assign s̃k here and thus cannot define st′ in line 45 because s̃ksID is
unknown. Thus, it cannot compute the state, but will only draw IV . When A issues
a query to Rev-State, Cb checks if the initiator is corrupted, calls Open to obtain
the corresponding ephemeral secret key s̃k (line 23, Fig. 18) and will then compute and
output the complete state. If the initiator is not corrupted and Cb does not abort, ψ
is chosen uniformly at random. If the adversary queries G on (ki, IV ), we patch the
random oracle by calling Open in line 02 (Fig. 18) and computing the correct value for
st′, thus determining output value y.

If A queries SessionR, Cb checks whether there exists another session sID′ with the
same p̃k and if it does, Cb queries its Encaps oracle on sID′ in line 17 (Fig. 17). At that
point note why we can only embed the challenge in those sessions with a p̃k output
by SessionI. An active adversary may query SessionR on any p̃k that it has chosen
himself. Thus, Cb might not be able to query the challenge oracle Encaps on that p̃k.

As described before, we save challenges relative to sID′ in line 18 to restore them
later again when DerI is called in line 55. If the adversary queries DerI on a new value
c̃, Cb calls Open to obtain s̃k and compute K̃. Next, Cb computes Ki from ci, retrieves
Kr from the state and finally calculates the session key K.

Queries to a random oracle H̃sID are forwarded to the corresponding oracle H̃′sID
whenever a session is of type “In”.
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CEncaps,Open,̃H′1,...,̃H
′
S

b (p̃k1, ..., p̃kS)
00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (pkn, skn)← GenCCA
04 kn

$← {0, 1}κ
05 (pk′n, sk′n) := (pkn, (skn, kn))
06 b′ ← AO(pk′1, ..., pk′N )
07 for sID∗ ∈ S
08 if Fresh(sID∗) = false return 0
09 if Valid(sID∗) = false return 0
10 return b′

SessionR((i, r) ∈ [N ]2, I)
11 cnt ++
12 sID := cnt
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 (p̃k, cr) := I

16 if ∃sID′ s. t. p̃k = p̃ksID′

17 (c̃, K̃)← Encaps(sID′)
18 C̃KsID′ := C̃KsID′ ∪ {(c̃, K̃)}
19 else
20 (c̃, K̃)← EncapsH̃sID

CPA (p̃k)
21 if ∃K′r s. t. (cr,K′r) ∈ CKr
22 Kr := K′r
23 else
24 Kr := DecapsHr

CCA(skr, cr)
25 Dr := Dr ∪ {cr}
26 ci ← SimEncapsCCA(pki, ski)
27 Ki

$← K
28 Ci := Ci ∪ {(ci,⊥)}
29 CKi := CKi ∪ {(ci,Ki)}
30 context := (pki, pkr, p̃k, ci, cr, c̃)
31 K := H(context,Ki,Kr, K̃)
32 R := (c̃, ci)
33 (I[sID], R[sID], sKey[sID]) := (I,R,K)
34 return (sID, R)

SessionI((i, r) ∈ [N ]2)
35 cnt ++
36 sID := cnt
37 (init[sID], resp[sID], type[sID]) := (i, r, “In”)
38 (p̃k, s̃k) := (p̃ksID,⊥) �s̃ksID unknown
39 cr ← SimEncapsCCA(pkr, skr)
40 Kr

$← K
41 Cr := Cr ∪ {(cr,⊥)}
42 CKr := CKr ∪ {(cr,Kr)}
43 I := (p̃k, cr)
44 IV $← {0, 1}κ

45 st′ := (p̃k,⊥, cr,Kr)
46 st := (IV,⊥)
47 (I[sID], state[sID], state′[sID]) := (I, st, st′)
48 return (sID, I)

DerI(sID, R)
49 if state[sID] = ⊥ or sKey[sID] 6= ⊥
50 return ⊥
51 (i, r) := (init[sID], resp[sID])
52 (p̃k, · , cr,Kr) := state′[sID]
53 (c̃, ci) := R

54 if ∃K̃′ s. t. (c̃, K̃′) ∈ C̃KsID

55 K̃ := K̃′

56 else
57 s̃k := Open(sID)
58 K̃ := DecapsH̃sID

CPA (s̃k, c̃)
59 if ∃K′i s. t. (ci,K′i) ∈ CKi
60 Ki := K′i
61 else
62 Ki := DecapsHi

CCA(ski, ci)
63 Di := Di ∪ {ci}
64 context := (pki, pkr, p̃k, ci, cr, c̃)
65 K := H(context,Ki,Kr, K̃)
66 (R[sID], sKey[sID]) := (R,K)
67 return ε

Figure 17: Adversaries Cb against S-NCKE-CPA for the proof of Eqn. (4). A has
access to oracles O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,

Test,G,H,H1, ...,HN , H̃1, ..., H̃S}, where Reveal,Corrupt,Test,H and Hn for n ∈
[N ] are defined as in Figure 14 resp. 15. Rev-State, G and H̃sID for sID ∈ [S] are
defined in Figure 18. Lines written in blue color highlight how the adversary simulates
G2,b and interpolates to G3,b .

If Cb is in the NCKE-CPAreal game, it perfectly simulates G2,b . Otherwise, if Cb is in
the NCKE-CPAsim game, it perfectly simulates G3,b . We have

∣∣Pr[GA3,b ⇒ 1]− Pr[GA2,b ⇒ 1]
∣∣ =

∣∣∣Pr[NCKE-CPACbsim ⇒ 1]− Pr[NCKE-CPACbreal ⇒ 1]
∣∣∣

= AdvS-NCKE-CPA
KEMCPA,SimCPA

(Cb) . (4)

142



Tightly-Secure Authenticated Key Exchange, Revisited

G(k, IV )
00 if ∃k, IV s. t. (k, IV, y) ∈ G return y
01 if ∃i s. t. k = ki and
∃(sID, ψ) s. t. state[sID] = (IV, ψ)
∧ revState[sID] = true

02 s̃k := Open(sID)
03 state′[sID] := (p̃k, s̃k, cr,Kr)
04 y := ψ ⊕ state′[sID]
05 else
06 y $← {0, 1}d
07 G := G ∪ {(k, IV, y)}
08 return y

H̃sID(M) �sID ∈ [S]
09 if ∃h s. t. (M,h) ∈ H̃sID return h
10 if type[sID] = “In”
11 h← H̃′sID(M)
12 else
13 h $← {0, 1}κ

14 H̃sID := H̃sID ∪ {(M,h)}
15 return h

Rev-State(sID)
16 if revState[sID] = true
17 return state[sID]
18 if type[sID] 6= “In” return ⊥
19 revState[sID] := true
20 (IV,⊥) := state[sID]
21 i := init[sID]
22 if corrupted[i]
23 s̃k := Open(sID)
24 state′[sID] := (p̃k, s̃k, cr,Kr)
25 state[sID] := (IV,G(IV, ki)⊕ state′[sID])
26 else if ∃y s. t. (ki, IV, y) ∈ G
27 BAD := true
28 abort
29 else
30 ψ $← {0, 1}d
31 state[sID] := (IV, ψ)
32 return state[sID]

Figure 18: Oracles G, H̃sID for sID ∈ [S] and Rev-State for adversaries Cb against
S-NCKE-CPA in Figure 17.

Games G4,b . In games G4,b , we change the output for K∗0 in the Test oracle to a
random key in line 49. Now games G4,0 and G4,1 are equal as well as games G4,1 and
G3,1 , hence∣∣Pr[GA3,1 ⇒ 1]− Pr[GA3,0 ⇒ 1]

∣∣ =
∣∣Pr[GA4,1 ⇒ 1]− Pr[GA3,0 ⇒ 1]

∣∣
=

∣∣Pr[GA4,0 ⇒ 1]− Pr[GA3,0 ⇒ 1]
∣∣ . (5)

It remains to bound
∣∣Pr[GA4,0 ⇒ 1]− Pr[GA3,0 ⇒ 1]

∣∣. Therefore, we will now consider the
different attacks for IND-wFS-St as described in Table 1. Depending on which queries
the adversary makes, each test session must belong to at least one of the attacks or the
game will return 0 anyway. For the analysis, we consider the worst case scenario where
the adversary queries as much information as it is allowed to obtain.

When referring to a particular test session sID∗, we will denote all values used with
an asterisk, i. e., context∗ = (pki∗ , pkr∗ , p̃k

∗
, ci∗ , cr∗ , c̃

∗) and IV ∗, ki∗ ,Ki∗ , Kr∗ , K̃∗. As
we assumed in the beginning that ciphertexts and long-term as well as ephemeral key
pairs are all different, it is not possible to recreate a particular session. In particular,
this means that there is no partially matching session and attack (0) of Table 1 will
return false.

Now the only possibility to learn any test key K∗0 is through random oracle queries.
Let QUERY be the event that (context,Ki,Kr, K̃) of any test session is queried to H
and QUERY∗ be the event that (context∗,Ki∗ ,Kr∗ , K̃

∗) of a specific test session is
queried to H. We have∣∣Pr[GA4,0 ⇒ 1]− Pr[GA3,0 ⇒ 1]

∣∣ ≤ Pr[QUERY] ≤ T · Pr[QUERY∗] ,

where the last inequality uses union bound over the number of test sessions T .
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Attack Security relies on ...

(1 ∨ 2), (10) IV ∗ unknown ⇒ s̃k
∗
unknown ⇒ K̃∗ unknown

(7 ∨ 8), (16) ski∗ unknown ⇒ Ki∗ unknown
(19) skr∗ and ki∗ unknown ⇒ Kr∗ unknown
(21) skr∗ and IV ∗ unknown ⇒ Kr∗ unknown
(24) ski∗ unknown ⇒ Ki∗ unknown

Figure 19: Overview of attacks for the proof of Theorem 2.

We will now focus on the event QUERY∗ and iterate over the attacks in Table 1.
An overview on the argumentation is given in Figure 19.
Attack (1∨2), (10). If (1∨2)⇒ true, the test session has a matching session and both
long-term secret keys (ski∗ , ki∗) and (skr∗ , kr∗) are revealed. Hence, A can compute Ki∗

and Kr∗ . However, A is not allowed to query the test session’s state or the state of the
matching session, depending on the type of the test session. Thus, A has no information
about s̃k

∗
. As there is a matching session for this test session, p̃k

∗
was generated by

SessionI, which means that K̃∗ is chosen uniformly at random and thus independent
of p̃k

∗
and c̃∗.

If (10)⇒ true, the test session has a partially matching and is of type “Re”. Here,
A is not allowed to query the state of the partially matching session. Except for that,
everything remains the same as explained above. Hence,

Pr[QUERY∗ | (1 ∨ 2)⇒ true] = Pr[QUERY∗ | (10)⇒ true] ≤ qH
|K|

.

Attack (7 ∨ 8), (16). If (7 ∨ 8)⇒ true, the test session has a matching session and
the state (IV ∗, ψ∗) is revealed. Furthermore, A can obtain (skr∗ , kr∗) and thus Kr∗ . As
secret key ski∗ is unknown to A, Ki∗ which is chosen uniformly at random from the key
space of KEMCCA is also unknown to A. K̃∗ is also chosen uniformly at random and
unknown as long as A does not obtain s̃k

∗
through queries to G or guesses K̃∗ correctly.

However, to bound event QUERY∗, we will only make use of the fact that Ki∗ is a
uniformly random key.

If (16)⇒ true, the test session has a partially matching session and is of type “Re”.
Here, A can reveal the state of the partially matching session (IV, ψ). The rest remains
the same. It follows that

Pr[QUERY∗ | (7 ∨ 8)⇒ true] = Pr[QUERY∗ | (16)⇒ true] ≤ qH
|K|

.

Attack (19). If (19)⇒ true, the test session has no matching session and the type of
this test session is “In”. A is allowed to obtain the initiator’s state (IV ∗, ψ∗) and can
choose (c̃∗, K̃∗) and (ci∗ ,Ki∗) itself. Kr∗ is unknown to A, unless it obtains it through
queries to G. Therefore, A can either guess ki∗ and query G or it can query H directly.
Hence,

Pr[QUERY∗ | (19)⇒ true] ≤ qG
2κ + qH

|K|
.
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Attack (21). If (21) ⇒ true, the test session has no matching session and the
type of this test session is “In”. A is allowed to obtain the initiator’s long-term se-
cret key (ski∗ , ki∗) and can choose (c̃∗, K̃∗) and (ci∗ ,Ki∗) itself. However, K∗r is un-
known to A and as it is chosen uniformly at random from the key space of KEMCCA,
(context∗,Ki∗ ,Kr∗ , K̃

∗) is queried to H with probability at most qH/|K|. This yields

Pr[QUERY∗ | (21)⇒ true] ≤ qH
|K|

.

Attack (24). If (24)⇒ true, the test session has no matching session and the type of
the test session is “Re”, which means that A can reveal the responder’s long-term secret
key (skr∗ , kr∗). Here, A can choose (p̃k

∗
, s̃k
∗
) and (cr∗ ,Kr∗) itself and thus is able to

compute K̃∗. As (ski∗ , ki∗) is unknown, so is Ki∗ and we have

Pr[QUERY∗ | (24)⇒ true] ≤ qH
|K|

.

Taking the maximum over the conditional probabilities, it follows that

∣∣Pr[GA4,0 ⇒ 1]− Pr[GA3,0 ⇒ 1]
∣∣ ≤ T · Pr[QUERY∗] ≤ T ·

(
qG
2κ + qH

|K|

)
. (6)

Finally, folding both adversaries B0 and B1 into one adversary B and C0 and C1 into
one adversary C yields

AdvN-NCKE-CCA
KEMCCA,SimCCA

(B0) + AdvN-NCKE-CCA
KEMCCA,SimCCA

(B1) = 2 ·AdvN-NCKE-CCA
KEMCCA,SimCCA

(B) and
AdvS-NCKE-CPA

KEMCPA,SimCPA
(C0) + AdvS-NCKE-CPA

KEMCPA,SimCPA
(C1) = 2 ·AdvS-NCKE-CPA

KEMCPA,SimCPA
(C) .

The proof of Theorem 2 follows by collecting the probabilities from Eqns. (2)-(6).

Note that the non-committing property is essential to embed random KEM keys in each
session and thus to achieve tightness. This way, we only need to make a case distinction
at the end and can argue that for all test sessions at least one KEM key is independent
of the adversary’s view no matter which queries it has made (provided it did not make
a trivial attack). Relying on a weaker assumption requires to make a case distinction
earlier in the proof and may involve guessing as in some cases it is not clear which KEM
key will be revealed (through corruption and/or reveal or state reveal) at a later point
in time.

6 AKE with Full Forward Security

We show how to build an explicitly authenticated AKE protocol using the concept of
non-committing key encapsulation. As we also need a signature scheme, we will first
give the relevant definitions.
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6.1 Digital Signatures

A digital signature scheme SIG = (GenSIG,Sign,Vrfy) consists of three algorithms. The
key generation algorithm GenSIG outputs a key pair (vk, sigk), where vk is the verification
key and sigk the signing key. The signing algorithm Sign inputs a signing key sigk and
a message m and outputs a signature σ. The deterministic verification algorithm Vrfy
inputs the verification key vk, a message m and a signature σ and outputs 1 if σ is a
valid signature for m, otherwise it outputs 0.

In Figure 20, we define the security game N user Strong UnForgeability under
Chosen Message Attacks with corruptions (N -SUF-CMA). The definition is similar
to the one given in [BHJ+15], except that we require strong unforgeability, i. e., the
adversary may also find a new signature for a message it queried to the Sign oracle
before. The advantage of an adversary A is defined as

AdvN-SUF-CMA
SIG (A) := Pr[N -SUF-CMAA ⇒ 1] .

GAME N -SUF-CMA
00 Scorr := ∅
01 for n ∈ [N ]
02 (vkn, sigkn)← GenSIG
03 Sn := ∅
04 (n∗,m∗, σ∗)← ASign,Corrupt(vk1, · · · , vkN )
05 if Vrfy(vkn∗ ,m∗, σ∗) = 1 and n∗ 6∈ Scorr

and (m∗, σ∗) 6∈ Sn∗
06 return 1
07 else
08 return 0

Sign(n ∈ [N ],m)
09 σ ← Sign(sigkn,m)
10 Sn := Sn ∪ {(m,σ)}
11 return σ

Corrupt(n ∈ [N ])
12 Scorr := Scorr ∪ {n}
13 return sigkn

Figure 20: Game N -SUF-CMA for SIG.

6.2 Transformation using NCKE and a Signature Scheme

From two key encapsulation mechanisms KEMCPA = (GenCPA,EncapsCPA,DecapsCPA)
and KEMCCA = (GenCCA,EncapsCCA,DecapsCCA) with key space K and a digital signa-
ture scheme SIG = (GenSIG,Sign,Vrfy), we construct a two-message authenticated key
exchange protocol AKEFS = (GenAKE, InitI,DerR,DerI) with key space K as shown in
Figures 21 and 22. Each party has a key pair (vk, sigk) for SIG, a key pair (pk, sk) for
KEMCCA and a symmetric key k to encrypt the secret state information which has to be
stored by the initiating party (cf. Section 5). The protocol uses additional cryptographic
hash functions F : {0, 1}∗ → {0, 1}κ to compute value π and H : {0, 1}∗ → K to output
the session key.

The initiating party computes an ephemeral key pair for KEMCPA, runs the EncapsCCA
algorithm on the intended receiver’s public key pkr to obtain a ciphertext cr and a key
Kr and signs both the ephemeral public key and cr, which are sent to the receiver along
with the signature. The receiver verifies the signature and then runs the EncapsCPA
algorithm on the ephemeral public key to output a ciphertext c̃ and a key K̃. It computes
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Party Pi ((vki, pki), (sigki, ski, ki)) Party Pr ((vkr, pkr), (sigkr, skr, kr))

(p̃k, s̃k)← GenCPA

(cr,Kr)← EncapsCCA(pkr)
σ ← Sign(sigki, (p̃k, cr))

if Vrfy(vki, (p̃k, cr), σ) = 1 :
(c̃, K̃)← EncapsCPA(p̃k)
Kr := DecapsCCA(skr, cr)
π := F(Kr, p̃k, cr, c̃, σ)

if F(Kr, p̃k, cr, c̃, σ) = π : K := H(context, K̃)
K̃ := DecapsCPA(s̃k, c̃)
K := H(context, K̃)

I := (p̃k, cr, σ)

R := (c̃, π)

st

Figure 21: Visualization: Running AKEFS between two parties, where K is the resulting
session key and context := (vki, pki, vkr, pkr, p̃k, cr, c̃, σ, π)

Kr using its secret key skr. It then tags the received message together with c̃ and Kr

by evaluating hash function F and sends the output together with c̃ to the initiator.
The initiator retrieves Kr from the secret state and also evaluates F. If the output is
the same, it computes K̃ using the ephemeral secret key. The session key is computed
evaluating hash function H on all public context and key K̃.

Theorem 3 (KEMCPA NCKE-CPA+KEMCCA NCKE-CCA+SIG N -SUF-CMA ROM⇒ AKEFS
IND-FS-St). For any IND-FS-St adversary A against AKEFS with N parties that estab-
lishes at most S sessions and issues at most T queries to test oracle Test, at most
qH, qG and qF queries to random oracles H, G and F, there exists an N -SUF-CMA
adversary B against SIG, an S-NCKE-CPA adversary C against KEMCPA and SimCPA
and an N -NCKE-CCA adversary D against KEMCCA and SimCCA such that

AdvIND-FS-St
AKEFS

(A) ≤ 2 ·
(

AdvN-SUF-CMA
SIG (B) + AdvS-NCKE-CPA

KEMCPA,SimCPA
(C) + AdvN-NCKE-CCA

KEMCCA,SimCCA
(D)
)

+ T ·
(
qG
2κ + qH

|K|

)
+N2 ·

(
1

2µSIG
+ 1

2µCCA
+ 1

2κ

)
+ S2 ·

(
1

2µCPA
+ 1

2γCCA
+ 1

2γCPA
+ 1

2κ

)
+ 2S · qG

22κ ,

where SimCPA and SimCCA are the simulators from the NCKE-CPA and NCKE-CCA ex-
periment, µSIG, µCPA, µCCA are collision probabilities of the key generation algorithms
GenSIG, GenCPA and GenCCA and γCPA, γCCA are the spreadness parameters of the en-
capsulation algorithms. The running times of B, C and D consist essentially of the
time required to execute the security experiment with the adversary once, plus a minor
number of additional operations (including bookkeeping, lookups etc.).

Proof. Let A be an adversary against IND-FS-St security of AKEFS, where N is the
number of parties, S is the maximum number of sessions that A establishes and T is
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GenAKE
00 (vk, sigk)← GenSIG
01 (pk, sk)← GenCCA
02 k $← {0, 1}κ
03 return (pk′, sk′) :=

((vk, pk), (sigk, sk, k))

InitI((sigki, ski, ki), (vkr, pkr))
04 (p̃k, s̃k)← GenCPA
05 (cr,Kr)← EncapsCCA(pkr)
06 σ ← Sign(sigki, (p̃k, cr))
07 IV $← {0, 1}κ

08 st′ := (p̃k, s̃k, cr,Kr, σ)
09 st := (IV,G(ki, IV )⊕ st′)
10 I := (p̃k, cr, σ)
11 return (I, st)

DerR((sigkr, skr, kr), (vki, pki), (p̃k, cr, σ))
12 if Vrfy(vki, (p̃k, cr), σ) 6= 1
13 return ⊥
14 (c̃, K̃)← EncapsCPA(p̃k)
15 Kr := DecapsCCA(skr, cr)
16 π := F(Kr, p̃k, cr, c̃, σ)
17 context := (vki, pki, vkr, pkr, p̃k, cr, c̃, σ, π)
18 K := H(context, K̃)
19 R := (c̃, π)
20 return (R,K)

DerI((sigki, ski, ki), (vkr, pkr), (c̃, π), st)
21 (IV, ψ) := st
22 (p̃k, s̃k, cr,Kr, σ) := G(ki, IV )⊕ ψ
23 if F(Kr, p̃k, cr, c̃, σ) 6= π
24 return ⊥
25 K̃ := DecapsCPA(s̃k, c̃)
26 context := (vki, pki, vkr, pkr, p̃k, cr, c̃, σ, π)
27 K := H(context, K̃)
28 return K

Figure 22: Authenticated key exchange protocol AKEFS from KEMCPA, KEMCCA and
SIG. Lines written in purple color are only used to encrypt the state.

the maximum number of test sessions. Consider the sequence of games in Figures 23
and 24.
Games G0,b . These are the original IND-FS-Stb games. Similar to Equation (2) in the
proof of Theorem 2, we assume all key pairs, N long-term keys generated by GenSIG and
GenCCA as well as ephemeral keys (at most S) generated by GenCPA, and all ciphertexts
(at most S) output by the EncapsCPA and EncapsCCA algorithms to be distinct. We also
assume that values kn, n ∈ [N ], and IV (at most S) are distinct. This yields∣∣∣Pr[IND-FS-StA1 ⇒ 1]− Pr[IND-FS-StA0 ⇒ 1]

∣∣∣ ≤ ∣∣Pr[GA0,1 ⇒ 1]− Pr[GA0,0 ⇒ 1]
∣∣

+N2 (2−µSIG + 2−µCCA + 2−κ
)

(7)
+S2 (2−µCPA + 2−γCCA + 2−γCPA + 2−κ

)
,

where µSIG, µCPA, µCCA are collision probabilities of the key generation algorithms GenSIG,
GenCPA and GenCCA and γCPA, γCCA are the spreadness parameters of EncapsCPA and
EncapsCCA.
Games G1,b . In games G1,b , we raise flag BREAKSIG in line 22 (Fig. 24) and abort when
A has not queried Corrupt to obtain sigki yet and has not only forwarded a message
and a signature output by SessionI. Note that if the game aborts, the signature must
be valid because this is checked before in line 19. Due to the difference lemma [Sho04],∣∣Pr[GA1,b ⇒ 1]− Pr[GA0,b ⇒ 1]

∣∣ ≤ Pr[BREAKSIG] . (8)

To bound Pr[BREAKSIG], we construct adversaries Bb for b ∈ {0, 1} against N -SUF-CMA
security of SIG in Figure 25.

148



Tightly-Secure Authenticated Key Exchange, Revisited

GAMES G0,b -G5,b
00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (vkn, sigkn)← GenSIG
04 (pkn, skn)← GenCCA �G0-1
05 (pkn, skn)← SimGenCCA �G2-5
06 kn

$← {0, 1}κ
07 (pk′n, sk′n) := ((vkn, pkn), (sigkn, skn, kn))
08 b′ ← AO(pk′1, ..., pk′N )
09 for sID∗ ∈ S
10 if Fresh(sID∗) = false return 0
11 if Valid(sID∗) = false return 0
12 return b′

SessionR((i, r) ∈ [N ]2, I)
13 cnt ++
14 sID := cnt
15 (init[sID], resp[sID]) := (i, r)
16 type[sID] := “Re”
17 peerCorrupted[sID] := corrupted[i]
18 (p̃k, cr, σ) := I

19 if Vrfy(vki, (p̃k, cr), σ) 6= 1
20 return ⊥
21 if peerCorrupted[sID] = false and 6 ∃sID′ s. t.

(init[sID′], type[sID′], I[sID′]) = (i, “In”, I) �G1-5
22 BREAKSIG := true �G1-5
23 abort �G1-5

24 (c̃, K̃)← EncapsH̃sID
CPA (p̃k) �G0-3

25 if ∃sID′ s. t. state′[sID′] = (p̃k, · , · , · , · ) �G4-5

26 ( · , s̃k, · , · , · ) := state′[sID′] �G4-5

27 c̃← SimEncapsCPA(p̃k, s̃k) �G4-5

28 K̃ $← K �G4-5

29 C̃sID′ := C̃sID′ ∪ {(c̃,⊥)} �G4-5

30 C̃KsID′ := C̃KsID′ ∪ {(c̃, K̃)} �G4-5
31 else �G4-5

32 (c̃, K̃)← EncapsH̃sID
CPA (p̃k) �G4-5

33 Kr := DecapsHr
CCA(skr, cr) �G0-1

34 if ∃K′r s. t. (cr,K′r) ∈ CKr �G2-5
35 Kr := K′r �G2-5
36 else �G2-5
37 Kr := DecapsHr

CCA(skr, cr) �G2-5
38 Dr := Dr ∪ {cr} �G2-5

39 π := F(Kr, p̃k, cr, c̃, σ)
40 context := (vki, pki, vkr, pkr, p̃k, cr, c̃, σ, π)
41 K := H(context, K̃)
42 R := (c̃, π)
43 (I[sID], R[sID], sKey[sID]) := (I,R,K)
44 return (sID, R)

SessionI((i, r) ∈ [N ]2)
45 cnt ++
46 sID := cnt
47 (init[sID], resp[sID]) := (i, r)
48 type[sID] := “In”
49 (p̃k, s̃k)← GenCPA �G0-3

50 (p̃k, s̃k)← SimGenCPA �G4-5
51 (cr,Kr)← EncapsHr

CCA(pkr) �G0-1
52 cr ← SimEncapsCCA(pkr, skr) �G2-5
53 Kr

$← K �G2-5
54 Cr := Cr ∪ {(cr,⊥)}
55 CKr := CKr ∪ {(cr,Kr)}
56 σ ← Sign(sigki, (p̃k, cr))
57 I := (p̃k, cr, σ)
58 IV $← {0, 1}κ

59 st′ := (p̃k, s̃k, cr,Kr, σ)
60 st := (IV,G(ki, IV )⊕ st′) �G0-2
61 st := (IV,⊥) �G3-5
62 (I[sID], state[sID]) := (I, st)
63 state′[sID] := st′
64 return (sID, I)

DerI(sID, R)
65 if state[sID] = ⊥ or sKey[sID] 6= ⊥
66 return ⊥
67 (i, r) := (init[sID], resp[sID])
68 peerCorrupted[sID] := corrupted[r]
69 (c̃, π) := R

70 (p̃k, s̃k, cr,Kr, σ) := state′[sID]
71 if F(Kr, p̃k, cr, c̃, σ) 6= π
72 return ⊥
73 K̃ := DecapsH̃sID

CPA (s̃k, c̃) �G0-3

74 if ∃K̃′ s. t. (c̃, K̃′) ∈ C̃KsID �G4-5

75 K̃ := K̃′ �G4-5
76 else �G4-5

77 K̃ := DecapsH̃sID
CPA (s̃k, c̃) �G4-5

78 context := (vki, pki, vkr, pkr, p̃k, cr, c̃, σ, π)
79 K := H(context, K̃)
80 (R[sID], sKey[sID]) := (R,K)
81 return ε

H(x)
82 if ∃K s. t. (x,K) ∈ H
83 return K
84 K $← K
85 H := H ∪ {(x,K)}
86 return K

Figure 23: Games G0,b-G5,b for the proof of Theorem 3. A has access to ora-
cles O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,Test,F,G,H,
H1, ...,HN , H̃1, ..., H̃S}, where Corrupt and Reveal are defined as in the original
IND-FS-St game (Fig. 10) and oracles Rev-State, F,G, Hn for n ∈ [N ], H̃sID for
sID ∈ [S] and Test are defined in Figure 24.
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Rev-State(sID)
00 if revState[sID] = true
01 return state[sID]
02 if type[sID] 6= “In” return ⊥
03 revState[sID] := true
04 i := init[sID] �G3-5
05 (IV,⊥) := state[sID] �G3-5
06 if corrupted[i] �G3-5
07 state[sID] := (IV,G(ki, IV )⊕ state′[sID]) �G3-5
08 else if ∃y s. t. (ki, IV, y) ∈ G �G3-5
09 BAD := true �G3-5
10 abort �G3-5
11 else �G3-5
12 ψ $← {0, 1}d �G3-5
13 state[sID] := (IV, ψ) �G3-5
14 return state[sID]

F(x)
15 if ∃h s. t. (x, h) ∈ F return h
16 h $← {0, 1}κ
17 F := F ∪ {(x, h)}
18 return h

G(k, IV )
19 if ∃k, IV s. t. (k, IV, y) ∈ G
20 return y
21 y $← {0, 1}d �G0-2
22 if ∃i s. t. k = ki and ∃(sID, ψ) s. t.

state[sID] = (IV, ψ) ∧ revState[sID] = true �G3-5
23 y := ψ ⊕ state′[sID] �G3-5
24 else �G3-5
25 y $← {0, 1}d �G3-5
26 G := G ∪ {(k, IV, y)}
27 return y

Hn(M) �n ∈ [N ]
28 if ∃h s. t. (M,h) ∈ Hn return h
29 h $← {0, 1}κ �G0-1
30 if corrupted[n] �G2-5
31 h← SimHashCCA(pkn, skn, CKn,Dn,Hn,M) �G2-5
32 else �G2-5
33 h← SimHashCCA(pkn, skn, Cn,Dn,Hn,M) �G2-5
34 Hn := Hn ∪ {(M,h)}
35 return h

H̃sID(M) �sID ∈ [S]
36 if ∃h s. t. (M,h) ∈ H̃sID return h
37 h $← {0, 1}κ �G0-3
38 if type[sID] = “In” �G4-5

39 (p̃k, s̃k, · , · , · ) := state′[sID] �G4-5
40 i := init[sID] �G4-5
41 if revState[sID] and corrupted[i] �G4-5

42 h← SimHashCPA(p̃k, s̃k, C̃KsID, H̃sID,M) �G4-5
43 else �G4-5

44 h← SimHashCPA(p̃k, s̃k, C̃sID, H̃sID,M) �G4-5
45 else �G4-5
46 h $← {0, 1}κ �G4-5

47 H̃sID := H̃sID ∪ {(M,h)}
48 return h

Test(sID)
49 if sID ∈ S return ⊥
50 S := S ∪ {sID}
51 if sKey[sID] = ⊥ return ⊥
52 K∗0 := sKey[sID] �G0-4
53 K∗0

$← K �G5
54 K∗1

$← K
55 return K∗b

Figure 24: Oracles Rev-State, F, G, Hn for n ∈ [N ], H̃sID and Test for sID ∈ [S]
for games G0,b-G5,b in Fig. 23.

Bb inputs N verification keys (vk1, ..., vkN ) and has access to signing oracle Sign
and corruption oracle Corrupt′. It then generates N key pairs for KEMCCA and N
symmetric keys kn which are part of the long-term secret key. It forwards the public
keys to adversary A. Whenever A queries SessionI on a pair (i, r), Bb queries Sign on
user i in line 37 to obtain a signature σ to message (p̃k, cr). It then outputs (p̃k, cr, σ)
to A.

To answer a Corrupt query on user n, Bb queries its own oracle Corrupt′ to
obtain signing key sigkn in line 46 and outputs secret keys sigkn, skn and kn to A.

Recall that flag BREAKSIG is raised when A has not queried Corrupt to obtain
sigki, but computes a valid signature which was not output by SessionI. If A queries
SessionR on pair (i, r) and I = (p̃k, cr, σ) such that this is the case, Bb wins the
N -SUF-CMA game by returning (i, (p̃k, cr), σ). It follows that

Pr[BREAKSIG] = AdvN-SUF-CMA
SIG (Bb) . (9)

Games G2,b . In games G2,b , we use the SimGenCCA algorithm to generate long-term key
pairs (pkn, skn) in line 05 (Fig. 23). Next, SessionI uses the SimEncapsCCA algorithm
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BbSign,Corrupt′ (vk1, ..., vkN )
00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (pkn, skn)← GenCCA
04 kn

$← {0, 1}κ
05 (pk′n, sk′n) := ((vkn, pkn), (⊥, skn, kn))
06 b′ ← AO(pk′1, ..., pk′N )
07 for sID∗ ∈ S
08 if Fresh(sID∗) = false return 0
09 if Valid(sID∗) = false return 0
10 return ⊥

SessionR((i, r) ∈ [N ]2, I)
11 cnt ++
12 sID := cnt
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 peerCorrupted[sID] := corrupted[i]
16 (p̃k, cr, σ) := I

17 if Vrfy(vki, (p̃k, cr), σ) 6= 1
18 return ⊥
19 if peerCorrupted[sID] = false and 6 ∃sID′ s. t.

(init[sID′], type[sID′], I[sID′]) = (i, “In”, I)
20 return FORGE := (i, (p̃k, cr), σ)
21 (c̃, K̃)← EncapsH̃sID

CPA (p̃k)
22 Kr := DecapsHr

CCA(skr, cr)
23 π := F(Kr, p̃k, cr, c̃, σ)
24 context := (vki, pki, vkr, pkr, p̃k, cr, c̃, σ, π)
25 K := H(context, K̃)
26 R := (c̃, π)
27 (I[sID], R[sID], sKey[sID]) := (I,R,K)
28 return (sID, R)

SessionI((i, r) ∈ [N ]2)
29 cnt ++
30 sID := cnt
31 (init[sID], resp[sID]) := (i, r)
32 type[sID] := “In”
33 (p̃k, s̃k)← GenCPA
34 (cr,Kr)← EncapsHr

CCA(pkr)
35 Cr := Cr ∪ {(cr,⊥)}
36 CKr := CKr ∪ {(cr,Kr)}
37 σ ← Sign(i, (p̃k, cr))
38 I := (p̃k, cr, σ)
39 IV $← {0, 1}κ

40 st′ := (p̃k, s̃k, cr,Kr, σ)
41 st := (IV,G(ki, IV )⊕ st′)
42 (I[sID], state[sID]) := (I, st)
43 state′[sID] := st′
44 return (sID, I)

Corrupt(n ∈ [N ])
45 corrupted[n] := true
46 sigkn := Corrupt′(n)
47 return sk′n := (sigkn, skn, kn)

Figure 25: Adversaries Bb against N -SUF-CMA for the proof of Eqn. (9). A has access
to oracles O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,Test,F,
G,H,H1, ...,HN , H̃1, ..., H̃S}, where DerI, Reveal, Rev-State,Test,F,G,H, Hn for
n ∈ [N ] and H̃sID for sID ∈ [S] are defined as in games G0,b in Figure 23 resp. 24.
Lines written in blue color highlight how the adversary simulates G0,b and how event
BREAKSIG leads to a forgery.

to compute ciphertext cr in line 52 and draws a random key Kr in line 50. Kr is then
retrieved in line 35 (Fig. 24) when the same cr is issued to SessionR. Furthermore, the
SimHashCCA algorithm is used in all random oracles Hn, where n ∈ [N ]. In case party n
is corrupted, i. e., skn is known to the adversary A, we call SimHashCCA with set CKn,
otherwise with set Cn.

For b ∈ {0, 1}, we construct adversaries Cb against N -NCKE-CCA security of KEMCCA
in Figure 26, similar to adversaries Bb in Figure 16, only that here we have only ci-
phertexts generated by initiating sessions and that signatures are simulated as well. If
Cb is in the NCKE-CCAreal game, it perfectly simulates G1,b . Otherwise, if Cb is in the
NCKE-CCAsim game, it perfectly simulates G2,b . We have

151



T. Jager, E. Kiltz, D. Riepel, S. Schäge

CbEncaps,Decaps,Open,H′1,...,H
′
N (pk1, ..., pkN )

00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (vkn, sigkn)← GenSIG
04 kn

$← {0, 1}κ
05 (pk′n, sk′n) := ((vkn, pkn), (sigkn,⊥, kn))
06 b′ ← AO(pk′1, ..., pk′N )
07 for sID∗ ∈ S
08 if Fresh(sID∗) = false return 0
09 if Valid(sID∗) = false return 0
10 return b′

SessionR((i, r) ∈ [N ]2, I)
11 cnt ++
12 sID := cnt
13 (init[sID], resp[sID]) := (i, r)
14 type[sID] := “Re”
15 peerCorrupted[sID] := corrupted[i]
16 (p̃k, cr, σ) := I

17 if Vrfy(vki, (p̃k, cr), σ) 6= 1
18 return ⊥
19 if peerCorrupted[sID] = false and 6 ∃sID′ s. t.

(init[sID′], type[sID′], I[sID′]) = (i, “In”, (p̃k, cr, · ))
20 BREAKSIG := true
21 abort
22 if ∃K′r s. t. (cr,K′r) ∈ CKr
23 Kr := K′r
24 else
25 Kr := Decaps(r, cr)
26 π := F(Kr, p̃k, cr, c̃, σ)
27 context := (vki, pki, vkr, pkr, p̃k, cr, c̃, σ, π)
28 K := H(context, K̃)
29 R := (c̃, π)
30 (I[sID], R[sID], sKey[sID]) := (I,R,K)
31 return (sID, R)

SessionI((i, r) ∈ [N ]2)
32 cnt ++
33 sID := cnt
34 (init[sID], resp[sID]) := (i, r)
35 type[sID] := “In”
36 (p̃k, s̃k)← GenCPA
37 (cr,Kr)← Encaps(r)
38 CKr := CKr ∪ {(cr,Kr)}
39 σ ← Sign(sigki, (p̃k, cr))
40 I := (p̃k, cr, σ)
41 IV $← {0, 1}κ

42 st′ := (p̃k, s̃k, cr,Kr, σ)
43 st := (IV,G(ki, IV )⊕ st′)
44 (I[sID], state[sID]) := (I, st)
45 state′[sID] := st′
46 return (sID, I)

Corrupt(n ∈ [N ])
47 corrupted[n] := true
48 skn := Open(n)
49 return sk′n := (sigkn, skn, kn)

Hn(M) �n ∈ [N ]
50 if ∃h s. t. (M,h) ∈ Hn return h
51 h← H′n(M)
52 Hn := Hn ∪ {(M,h)}
53 return h

Figure 26: Adversaries Cb againstN -NCKE-CCA for the proof of Eqn. (10).A has access
to oracles O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,Test,F,
G,H,H1, ...,HN , H̃1, ..., H̃S}, where DerI, Reveal, Rev-State,Test,F,G,H and H̃sID
for sID ∈ [S] are defined as in games G1,b in Figure 23 resp. 24. Lines written in blue
color highlight how the adversary simulates G1,b and interpolates to G2,b .

∣∣Pr[GA2,b ⇒ 1]− Pr[GA1,b ⇒ 1]
∣∣ =

∣∣∣Pr[NCKE-CCACbsim ⇒ 1]− Pr[NCKE-CCACbreal ⇒ 1]
∣∣∣

= AdvN-NCKE-CCA
KEM,Sim (Cb) (10)

We make the same preparations as in the proof of Theorem 2, before switching to the
algorithms of the simulator SimCPA = (SimGenCPA,SimEncapsCPA,SimHashCPA) in games
G4,b . In particular, we introduce an intermediate game which delays the computation
and encryption of the state.
Games G3,b . We move the encryption of the state to the Rev-State oracle and choose
only IV when SessionI is called. Then, when Rev-State is queried and the initiator i
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is corrupted, we honestly compute the state in line 07 (Fig. 23). If the adversary already
made a query to G, where (ki, IV ) are as in the corresponding session, we raise flag
BAD in line 09 and abort in line 10. Otherwise, we choose a random string ψ in line
12 and patch the random oracle G for the case that A issues a query with the correct
symmetric key ki and IV . If BAD is not raised, the adversary’s view does not change.
We have ∣∣Pr[G3,b ⇒ 1]− Pr[G2,b ⇒ 1]

∣∣ ≤ Pr[BAD] ≤ S · qG
22κ .

Games G4,b . Following the previous proofs, we now use the SimGenCPA algorithm to
generate ephemeral key pairs (p̃k, s̃k), the SimEncapsCPA algorithm to compute ciphertext
c̃ and choose a uniformly random key K̃ whenever the ephemeral public key p̃k was
output by SessionI. Random oracles H̃sID will then use the SimHashCPA algorithm.

In Figure 27, we construct adversaries Db for b ∈ {0, 1} against S-NCKE-CPA which
are similar to adversaries Cb defined in Figure 17. Here, Db generates N key pairs with
GenSIG and simulates the signatures.

If Db is in the NCKE-CPAreal game, it perfectly simulates G3,b . Otherwise, if Db is
in the NCKE-CPAsim game, it perfectly simulates G4,b . We have∣∣Pr[GA4,b ⇒ 1]− Pr[GA3,b ⇒ 1]

∣∣ =
∣∣∣Pr[NCKE-CPADbsim ⇒ 1]− Pr[NCKE-CPADbreal ⇒ 1]

∣∣∣
= AdvS-NCKE-CPA

KEMCPA,SimCPA
(Db) . (11)

Games G5,b . In games G5,b , we change the output for K∗0 in the Test oracle to a
random key in line 53 (Fig. 23). Now games G5,0 and G5,1 are equal as well as games
G5,1 and G4,1 , hence∣∣Pr[GA4,1 ⇒ 1]− Pr[GA4,0 ⇒ 1]

∣∣ =
∣∣Pr[GA5,1 ⇒ 1]− Pr[GA4,0 ⇒ 1]

∣∣
=

∣∣Pr[GA5,0 ⇒ 1]− Pr[GA4,0 ⇒ 1]
∣∣ . (12)

It remains to bound |Pr[GA5,0 ⇒ 1] − Pr[GA4,0 ⇒ 1]|. Therefore, we will now consider
the different attacks for IND-FS-St as described in Table 2. Depending on which queries
the adversary makes, each test session must belong to at least one of the attacks or the
game will return 0 anyway.

Again, we will assume that the adversary queries as much information as possible.
Variables of a particular test session sID∗ are denoted by context∗= (vki∗ , pki∗ , vkr∗ , pkr∗ ,
p̃k
∗
, cr∗ , c̃

∗, σ∗, π∗) and IV ∗, ki∗ , K̃∗. As we assumed in the beginning that ciphertexts
and long-term as well as ephemeral key pairs are all different, it is not possible to
recreate a particular session. In particular, this means that there is no partially matching
session and row (0) will return false.

Now the only possibility to learn any test key K∗0 is through random oracle queries.
Let QUERY be the event that (context, K̃) of any test session is queried to H and
QUERY∗ be the event that (context∗, K̃∗) of a specific test session is queried to H. We
have ∣∣Pr[GA5,0 ⇒ 1]− Pr[GA4,0 ⇒ 1]

∣∣ ≤ Pr[QUERY] .
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DEncaps,Open,̃H′1,...,̃H
′
S

b (p̃k1, ..., p̃kS)
00 cnt := 0
01 S := ∅
02 for n ∈ [N ]
03 (vkn, sigkn)← GenSIG
04 (pkn, skn)← SimGenCCA
05 kn

$← {0, 1}κ
06 (pk′n, sk′n) := ((vkn, pkn), (sigkn, skn, kn))
07 b′ ← AO(pk′1, ..., pk′N )
08 for sID∗ ∈ S
09 if Fresh(sID∗) = false return 0
10 if Valid(sID∗) = false return 0
11 return b′

SessionR((i, r) ∈ [N ]2, I)
12 cnt ++
13 sID := cnt
14 (init[sID], resp[sID]) := (i, r)
15 type[sID] := “Re”
16 peerCorrupted[sID] := corrupted[i]
17 (p̃k, cr, σ) := I

18 if Vrfy(vki, (p̃k, cr), σ) 6= 1
19 return ⊥
20 if peerCorrupted[sID] = false and 6 ∃sID′ s. t.

(init[sID′], type[sID′], I[sID′]) = (i, “In”, (p̃k, cr, · ))
21 BREAKSIG := true
22 abort
23 if ∃sID′ s. t. p̃k = p̃ksID′

24 (c̃, K̃)← Encaps(sID′)
25 C̃KsID′ := C̃KsID′ ∪ {(c̃, K̃)}
26 else
27 (c̃, K̃)← EncapsH̃sID

CPA (p̃k)
28 if ∃K′r s. t. (cr,K′r) ∈ CKr
29 Kr := K′r
30 else
31 Kr := DecapsHr

CCA(skr, cr)
32 Dr := Dr ∪ {cr}
33 π := F(Kr, p̃k, cr, c̃, σ)
34 context := (vki, pki, vkr, pkr, p̃k, cr, c̃, σ, π)
35 K := H(context, K̃)
36 R := (c̃, π)
37 (I[sID], R[sID], sKey[sID]) := (I,R,K)
38 return (sID, R)

SessionI((i, r) ∈ [N ]2)
39 cnt ++
40 sID := cnt
41 (init[sID], resp[sID]) := (i, r)
42 type[sID] := “In”
43 (p̃k, s̃k) := (p̃ksID,⊥) �s̃ksID unknown
44 cr ← SimEncapsCCA(pkr, skr)
45 Kr

$← K
46 Cr := Cr ∪ {(cr,⊥)}
47 CKr := CKr ∪ {(cr,Kr)}
48 σ ← Sign(sigki, (p̃k, cr))
49 I := (p̃k, cr, σ)
50 IV $← {0, 1}κ

51 st′ := (p̃k,⊥, cr,Kr, σ)
52 st := (IV,⊥)
53 (I[sID], state[sID]) := (I, st)
54 state′[sID] := I, st, st′
55 return (sID, I)

DerI(sID, R)
56 if state[sID] = ⊥ or sKey[sID] 6= ⊥
57 return ⊥
58 (i, r) := (init[sID], resp[sID])
59 peerCorrupted[sID] := corrupted[r]
60 (c̃, π) := R

61 (p̃k, · , cr,Kr, σ) := state′[sID]
62 if F(Kr, p̃k, cr, c̃, σ) 6= π
63 return ⊥
64 if ∃K̃′ s. t. (c̃, K̃′) ∈ C̃KsID

65 K̃ := K̃′

66 else
67 s̃k := Open(sID)
68 K̃ := DecapsH̃sID

CPA (s̃k, c̃)
69 context := (vki, pki, vkr, pkr, p̃k, cr, c̃, σ, π)
70 K := H(context, K̃)
71 (R[sID], sKey[sID]) := (R,K)
72 return ε

Figure 27: Adversaries Db against S-NCKE-CPA for the proof of Eqn. (11). A has
access to oracles O := {SessionI,SessionR,DerI,Reveal,Rev-State,Corrupt,

Test,F,G,H,H1, ...,HN , H̃1, ..., H̃S}, where Reveal,Corrupt,Test, F, H and Hn for
n ∈ [N ] are defined as in games G3,b in Figure 23 resp. 24. Oracles Rev-State, G,
H̃sID for sID ∈ [S] are defined in Figure 28. Lines written in blue color highlight how
the adversary simulates G3,b and interpolates to G4,b .

Union bound over the maximum number of test sessions T yields

Pr[QUERY] ≤ T · Pr[QUERY∗] .
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Rev-State(sID)
00 if revState[sID] = true
01 return state[sID]
02 if type[sID] 6= “In” return ⊥
03 revState[sID] := true
04 i := init[sID]
05 (IV,⊥) := state[sID]
06 if corrupted[i]
07 s̃k := Open(sID)
08 state′[sID] := (p̃k, s̃k, cr,Kr, σi)
09 state[sID] := (IV,G(IV, ki)⊕ state′[sID])
10 else if ∃y s. t. (ki, IV, y) ∈ G
11 BAD := true
12 abort
13 else
14 ψ $← {0, 1}d
15 state[sID] := (IV, ψ)
16 return state[sID]

G(k, IV )
17 if ∃k, IV s. t. (k, IV, y) ∈ G return y
18 if ∃i s. t. k = ki and ∃(sID, ψ) s. t.

state[sID] = (IV, ψ) ∧
revState[sID] = true

19 s̃k := Open(sID)
20 state′[sID] := (p̃k, s̃k, cr,Kr, σ)
21 y := ψ ⊕ state′[sID]
22 else
23 y $← {0, 1}d
24 G := G ∪ {(k, IV, y)}
25 return y

H̃sID(M) �sID ∈ [S]
26 if ∃h s. t. (M,h) ∈ H̃sID return h
27 if type[sID] = “In”
28 h← H̃′sID(M)
29 else
30 h $← {0, 1}κ

31 H̃sID := H̃sID ∪ {(M,h)}
32 return h

Figure 28: Oracles Rev-State, G, H̃sID for sID ∈ [S] for adversaries Db in Fig. 27.

We will now focus on the event QUERY∗ and iterate over the attacks in Table 2. An
overview is given in Figure 29.
Attack (1 ∨ 2), (10). If (1 ∨ 2)⇒ true, the test session has a matching session and
both long-term secret keys (sigki∗ , ski∗ , ki∗) and (sigkr∗ , skr∗ , kr∗) are revealed. However,
A is not allowed to query the test session’s state or the state of the matching session,
depending on the type of the test session. Thus, A has no information about s̃k

∗
. As

there is a matching session for this test session, p̃k
∗
was generated by SessionI, which

means that K̃∗ is chosen uniformly at random and thus independent of p̃k
∗
and c̃∗.

Hence, the probability that A queries H on (context∗, K̃∗) is qH/|K|.
If (10)⇒ true, the test session has a partially matching session and it is of type

“Re”. A is allowed to obtain both long-term secret keys as the test session is completed.
A is not allowed to query the state of the partially matching session. This yields the
same scenario as described above. It follows that

Pr[QUERY∗ | (1 ∨ 2)⇒ true] = Pr[QUERY∗ | (10)⇒ true] ≤ qH
|K|

.

Attack (7 ∨ 8), (16). If (7 ∨ 8)⇒ true, the test session has a matching session and
the state (IV ∗, ψ∗) is revealed. Furthermore, A can obtain (sigkr∗ , skr∗ , kr∗). As the
initiator is not corrupted, s̃k

∗
is unknown to A, unless it issues a query to G on a correct

value ki∗ . The probability that this happens is upper bounded by qG/2κ. Another way
to learn the session key is to query H directly, where A succeeds with probability qH/|K|,
as K̃∗ is chosen uniformly at random.

If (16)⇒ true, the test session has a partially matching session and it is of type
“Re”. A can reveal the state (IV, ψ) of the partially matching session, the rest remains
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Attack Security relies on ...

(1 ∨ 2), (10) IV ∗ unknown ⇒ s̃k
∗
unknown ⇒ K̃∗ unknown

(7 ∨ 8), (16) ki∗ unknown ⇒ s̃k
∗
unknown ⇒ K̃∗ unknown

(17), (23) skr∗ unknown before session completed ⇒ π∗ cannot be computed
(18) sigki∗ unknown before session completed ⇒ σ∗ cannot be forged

Figure 29: Overview of attacks for the proof of Theorem 3.

unchanged to before. Thus,

Pr[QUERY∗ | (7 ∨ 8)⇒ true] = Pr[QUERY∗ | (16)⇒ true] ≤ qG
2κ + qH

|K|
.

Attack (17), (23). If (17)⇒ true, the test session has no matching session and it is
of type “In”. A is allowed to obtain the initiator’s long-term secret key (sigki∗ , ski∗ , ki∗)
and can choose (c̃∗, K̃∗) itself, but the responder’s long-term secret key (sigkr∗ , skr∗ , kr∗)
will only be available after the session key is established. Thus, A does not know Kr∗ ,
which is a uniformly random key. A can only complete the session if it manages to
compute π by querying F on Kr∗ , where the probability for that is upper bounded by
qF/|K|.

If (23)⇒ true, instead of obtaining the initiator’s long-term secret key, A is allowed
to obtain the initiator’s state (IV ∗, ψ∗). The rest remains the same. A can only complete
the session if it manages to forge π, for which it has to query F on the correct key Kr∗ .
Thus,

Pr[QUERY∗ | (17)⇒ true] = Pr[QUERY∗ | (23)⇒ true] ≤ qF
|K|

.

Attack (18). If (18) ⇒ true, the test session has no matching session and it is
of type “Re”, which means that A can reveal the responder’s long-term secret key
(sigkr∗ , skr∗ , kr∗). Here, A has two possibilities. First, it can choose (p̃k

∗
, s̃k
∗
) and

(cr∗ ,Kr∗) itself. However, the initiator’s long-term secret key (sigki∗ , ski∗ , ki∗) will only
be available after the session key is established and A has to forge σi∗ to call SessionR
in the first place. As the game aborts if that happens, the session key will never be
computed.

Pr[QUERY∗ | (18)⇒ true] = 0 .

Taking the maximum over the conditional probabilities and assuming that qH ≈ qF,
it follows that∣∣Pr[GA5,0 ⇒ 1]− Pr[GA4,0 ⇒ 1]

∣∣ ≤ Pr[QUERY] ≤ T · Pr[QUERY∗]

≤ T ·
(
qG
2κ + qH

|K|

)
(13)

The proof of Theorem 3 follows by collecting the probabilities from Equations (8)-(13)
and by folding adversaries B0 and B1, C0 and C1 as well as D0 and D1 into single
adversaries B, C and D.
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7 Concrete Instantiation of AKE Protocols
7.1 NCKE from the DDH Assumption

Let us first describe the hash proof system we will use. Therefore, let GGen be a
group generation algorithm which takes the security parameter 1κ as input and returns
(G, p, g1), where g1 is a generator of the cyclic group G with prime order p. Define
group = (G, p, g1, g2), where g2 = gw1 for w $← Zp. Define Y = Z2

p and X = {(gr1, gr2) :
r ∈ Zp}. A value r is a witness that (c1, c2) ∈ X . Define SK = Z2

p, PK = Zp and
Z = Zp. For sk = (x1, x2) ∈ Z2

p, define µ(sk) = X = gx1
1 gx2

2 . This defines the output of
the parameter generation algorithm Par.

For (c1, c2) ∈ Y define Λsk(c1, c2) := Z = (cx1
1 cx2

2 ). This defines the private evaluation
algorithm Priv(sk, (c1, c2)). Given pk = µ(sk) = X, (c1, c2) ∈ X and a witness r ∈ Zp
such that (c1, c2) = (gr1, gr2), the public evaluation algorithm Pub(pk, (c1, c2), r) computes
Z = Λsk(c1, c2) as Z = Xr.

We define KEMDDH = (GenDDH,EncapsDDH,DecapsDDH) with global parameters
par := (G, p, g1, g2) as shown in Figure 30.

GenDDH(par)
00 (x1, x2) $← Z2

p

01 X := gx1
1 gx2

2
02 return (pk := X,

sk := (x1, x2))

EncapsH
DDH(pk,m)

03 r $← Zp
04 (c1, c2) := (gr1 , gr2)
05 K := H(c1, c2, X

r)
06 return ((c1, c2),K)

DecapsH
DDH(sk, (c1, c2))

07 K := H(c1, c2, c
x1
1 cx2

2 )
08 return K

Figure 30: Key encapsulation mechanism KEMDDH = (GenDDH,EncapsDDH,
DecapsDDH).

Definition 3 (m-fold DDH Problem). Let GGen be a PPT algorithm that on input 1κ
outputs a cyclic group G of prime order 2k−1 ≤ p ≤ 2k with generator g1. Furthermore
let g2 = gω1 for ω $← Zp. The m-DDH problem requires to distinguish m DDH tuples
from m uniformly random tuples:

Advm-DDH
GGen (A) :=

∣∣Pr[A(G, p, g1, g2, (gri1 , g
ri
2 )i∈[m])⇒ 1]

−Pr[A(G, p, g1, g2, (gri1 , g
r′i
2 )i∈[m])⇒ 1]

∣∣∣ ,
where probability is taken over (G, p, g)← GGen, ri, r′i $← Zp for i ∈ [m], as well as the
coin tosses of A.

Lemma 1 (Random self-reducibility of DDH [EHK+13]). For any adversary C against
the m-fold DDH problem, there exists an adversary B against the DDH problem with
roughly the same running time such that

Advm-DDH
GGen (C) ≤ AdvDDH

GGen(B) + 1
p− 1 .

The following theorem establishes that the construction given in Figure 30 is an
N -receiver non-committing encapsulation mechanism under the DDH assumption.
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Theorem 4. Under the DDH assumption and in the random oracle model, KEMDDH
is an N -receiver non-committing key encapsulation mechanism. In particular, for any
N -NCKE-CCA adversary A against KEMDDH and SimDDH that issues at most qE queries
per user to Encaps, qD queries to Decaps and at most qH queries to each random
oracle Hn, n ∈ [N ], there exists an adversary B against DDH with roughly the same
running time such that

AdvN-NCKE-CCA
KEMDDH,SimDDH

(A) ≤ AdvDDH
GGen(B) + N · qE · (qH + qD + 1)

p
+ 1
p− 1 ,

where SimDDH is the simulator defined relative to KEMDDH.

Proof. We apply Theorem 1 and analyze the entropy of the underlying HPS. The key
space Z is Zp. For sk = (x1, x2) $← Z2

p, pk = µ(sk) = gx1
1 gx2

2 and Z = Priv(sk, (c1, c2)) =
cx1
1 cx2

2 , where (c1, c2) = (gr1, gr
′

2 ) and (r, r′) $← Z2
p, we have(

logg1 pk
logg1 Z

)
= M

(
x1
x2

)
, where M =

(
1 w

r wr′

)
.

If r 6= r′, then detM = w(r′ − r) 6= 0, which implies that pk and Z are random and
independent group elements as long as x1, x2 are unknown. Thus, for all Z ′ ∈ Z, holds
that Pr[Z = Z ′] = 1/p . In Definition 3, all values ri and r′i are drawn uniformly at
random from Zp. The probability that ri = r′i for any i ∈ [N · qE ] is upper bounded by
N · qE/p. Furthermore, the probability that a specific challenge ciphertext is issued to
Decaps before it is output by Encaps is at most qD/p. It follows that

AdvN-NCKE-CCA
KEM,Sim (A) ≤ Advm-DDH

GGen (B) + N · qE
p

+ N · qE · qH
p

+ N · qE · qD
p

.

Now Theorem 4 follows directly from Lemma 1.

7.2 Concrete Instantiation of AKE Protocols

We instantiate protocols AKEwFS (Section 5) and AKEFS (Section 6.2) with KEMDDH
(Section 7.1) for both KEMCPA and KEMCCA. We will not give a concrete instantiation of
the signature scheme used in AKEFS at this point. The resulting protocols AKEwFS,DDH
and AKEFS,DDH are shown in Figure 1 in the introduction.

Note that for AKEwFS,DDH we can improve efficiency by sending only one ciphertext
for both p̃k and pki in the second message, as KEMDDH is a multi-recipient KEM. We
establish Theorem 5 and give a proof sketch.

Theorem 5 (IND-wFS-St security of AKEwFS,DDH). Under the DDH assumption,
AKEwFS,DDH is IND-wFS-St secure in the random oracle model. In particular, for any
IND-wFS-St adversary A against AKEwFS,DDH with N parties that establishes at most S
sessions and issues at most T queries to the test oracle Test, qG queries to random
oracle G, qH̃, qHn queries to each random oracle H̃sID and Hn and at most qH queries
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to random oracle H, there exists an adversary B against DDH with roughly the same
running time such that

AdvIND-wFS-St
AKEwFS,DDH

(A) ≤ 2 ·AdvDDH
GGen(B) + T · qG + qH

2κ + (N + S)2 · 1
p

+N2 · 1
2κ

+ S2 ·
(

2
p

+ 1
2κ

)
+ 2S ·

(
qG
22κ +

qH̃ + qHn + 1
p

)
+ 2
p− 1 ,

where κ is a security parameter.

Due to the improved construction, we cannot apply Theorem 2 directly, but we give
a proof sketch from the DDH assumption and show that the same technique as in the
proofs of Theorems 2 and 4 can be used.

Proof. We proceed similar and consider collisions first. We assume that all key pairs
generated by GenDDH are different. Note that we also have to consider collisions between
long-term and ephemeral public keys. It holds that

Pr[x1, x2, x
′
1, x
′
2

$← Zp : gx1
1 gx2

2 = g
x′1
1 g

x′2
2 ] = 1/p .

Union bound yields (N + S)2/p, as we have N long-term public keys and at most
S ephemeral public keys. For ciphertexts (c1, c2) ∈ C output by the encapsulation
algorithm EncapsDDH, it holds that

Pr[r $← Zp : (c1, c2) = (gr1, gr2)] = 1/p ,

which yields an upper bound for collisions of S2/p, as there are at most S sessions with
one ciphertext. We also assume that values IV are different in all sessions and keys kn
are different for all parties.

We use the secret keys to compute keys Ki, Kr and K̃. Next, we replace all
ciphertexts by uniformly random group elements at the same time, reducing to the
S-fold DDH assumption and use the random self-reducibility property. In addition to
that, we ensure that all ciphertexts are indeed invalid by adding S/p which is the
probability that exponents are the same for any ciphertext.

Instead of the corresponding random oracles, we use internal hash functions H̃′sID
and H′n for sID ∈ [S] and n ∈ [N ] to compute keys Ki, Kr and K̃, but patch the random
oracles if the secret key is known to the adversary. As there are at most S challenge
keys computed with a long-term key pair and at most S challenge keys computed with
an ephemeral key pair, the difference can be upper bounded by S · qHn/p + S · qH̃/p

using a hybrid argument. Now we can replace Ki, Kr and K̃ by uniformly random keys.
The rest of the proof is equal to the proof of Theorem 2. The size of the key space

of KEMDDH is 2κ and the bound follows by collecting all probabilities. For protocol

AKEFS,DDH, we apply Theorem 3 to show IND-FS-St security. The collision probabilities
for KEMDDH are already shown in the previous proof. Additionally, we need a strongly
unforgeable signature scheme.
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Theorem 6 (IND-FS-St security of AKEFS,DDH). For an N -SUF-CMA secure signature
scheme SIG and under the DDH assumption, AKEFS,DDH is IND-FS-St secure in the
random oracle model. In particular, for any IND-FS-St adversary A against AKEFS,DDH
with N parties that establishes at most S sessions and issues at most T queries to the
test oracle Test, qG queries to random oracle G, qF queries to random oracle F, qH̃, qHn

queries to each random oracle H̃sID and Hn and at most qH queries to random oracle
H, there exists an adversary B against DDH and an adversary C against N -SUF-CMA
such that

AdvIND-FS-St
AKEFS,DDH

(A) ≤ 4 ·AdvDDH
GGen(B) + 2 ·AdvN-SUF-CMA

SIG (C) + T · qF + qG + qH
2κ

+ N2 ·
(

1
2µSIG

+ 1
p

+ 1
2κ

)
+ S2 ·

(2qH̃ + 6
p

+ 1
2κ

)
+ 2NS · qHn + 2

p
+ 2S · qG

22κ + 4
p− 1 ,

where µSIG is the collision probability of the key generation algorithm GenSIG and κ is a
security parameter.

The signature scheme can be instantiated with the tight scheme based on the DDH
and CDH assumption proposed by Gjøsteen and Jager in [GJ18], which is also used in
their authenticated key exchange protocol.
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A NCKE from the Higher Residuosity Assumption
We show how to construct an NCKE scheme using the hash proof system based on the
higher residuosity (HR) problem described in [HK09]. Therefore, we will first recall
some definitions.
Quadratic Residues. An n-bit integer N = PQ, where P,Q are two distinct n/2-bit
odd primes is called an RSA modulus. We assume that N is a Blum integer, i. e., both
P and Q are congruent 3 modulo 4. By φ(N) we denote Euler’s totient function, i. e.
φ(N) = (P − 1)(Q− 1). By JN we denote the subgroup of all elements from Z∗N with
Jacobi symbol 1 and by QRN the group of quadratic residues modulo N , which is a
subgroup of JN with order (P − 1)(Q− 1)/4.
Signed Quadratic Residues. For x ∈ ZN , let |x| denote the absolute value of x,
where x is represented as a signed integer in the set {−(N − 1)/2, ..., (N − 1)/2}. The
signed group G+, where G is a subgroup of Z∗N , is defined as G+ := {|x| : x ∈ G}. For
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g, h ∈ G+ and integer x, we define g ◦ h := |g · h mod N | and gx := |gx mod N |. Our
focus will be on the group of signed quadratic residues QR+

N .

Lemma 2. [HK09] Let N be a Blum integer. Then:
(i) (QR+

N , ◦) is a group of order φ(N)/4.
(ii) QR+

N = J+
N . In particular, QR+

N is efficiently recognizable (given only N).
(iii) If QRN is cyclic, so is QR+

N .

RSA Instance Generator. Let 0 ≤ δ ≤ 1/4 be a constant and n(κ) be a function.
Let RSAgen be an algorithm that generates elements (N,P,Q, S) such that N = PQ is
an n-bit Blum integer. The prime factors of φ(N)/4 are pairwise distinct and at least
δn-bit integers. Furthermore, S > 1 is a divisor of φ(N)/4 with 1 < gcd(S, (P − 1)/2) <
(P − 1)/2 and 1 < gcd(S, (Q− 1)/2) < (Q− 1)/2.
Statistical Distance. The statistical distance between two random variables X and
Y having a common domain X is defined as ∆[X,Y ] = 1

2
∑
x∈X |Pr[X = x]−Pr[Y = x]|.

The min-entropy of a random variable X is defined as H∞(X) = − log(maxx∈X Pr[X =
x]).

Now we describe our HPS. Define group = (N, g), where (N,P,Q, S) ← RSAgen(1κ)
and g is a uniform generator of G+

S . Define Y = QR+
N and X = G+

S = {gr : r ∈ ZS}.
A value r is a witness that c ∈ X . It is possible to sample an almost uniform element
from X together with a witness by first picking r ∈ [N/4] and defining c = gr ∈ G+

S .
We will determine the statistical distance below in Equation (14). Membership in Y can
be efficiently checked by Lemma 2. Define SK = [N/4], PK = G+

S and Z = QR+
N . For

sk = x ∈ [N/4], define µ(sk) = X = gx ∈ G+
S . This defines the output of the parameter

generation algorithm Par.
For c ∈ Y define Λsk(c) := Z = cx. This defines the private evaluation algorithm

Priv(sk, c). Given pk = µ(sk) = X, c ∈ X and a witness r ∈ Z such that c = gr, the
public evaluation algorithm Pub(pk, c, r) computes Z = Λsk(c) as Z = Xr.

We want to analyze the statistical distance between the two distributions defined by
sampling from X1 = [φ(N)/4] and sampling from X2 = [N/4]. As φ(N)/4 = ST and
N/4 = ST + (P +Q− 1)/4, we can write the statistical distance as

∆[X1, X2] = (P +Q− 1)/4
N/4 = 1

P
+ 1
Q
− 1
PQ
≤ 1
P

+ 1
Q

= O(2−n/2) , (14)

where the last equation holds because P and Q are both n/2-bit primes.

Definition 4 (m-fold Higher Residuosity Problem). Let (N,P,Q, S) be generated by
RSAgen. The higher residuosity (HR) problem requires to distinguish m random elements
from G+

S from m random elements from QR+
N . The advantage of an adversary A against

the HR problem is defined as

Advm-HR
RSAgen(A) := |Pr[A(N, g, c1, ..., cm)⇒ 1]− Pr[A(N, g, c′1, ..., c′m)⇒ 1]| ,

where the probability is taken over (N,P,Q, S) ← RSAgen, c1, ..., cm $← G+
S and

c′1, ..., c
′
m

$← QR+
N as well as the coin tosses of A.
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Next, we want to show that the m-fold HR problem tightly reduces to the (1-)HR
problem using random self-reducibility.

Lemma 3 (Random self-reducibility of HR). For any adversary A against the m-fold
HR problem, there exists an adversary B against the HR problem with roughly the same
running time such that

Advm-HR
RSAgen(A) ≤ AdvHR

RSAgen(B) +m ·O(2−δn(κ)) +O(2−n/2) .

Proof. Let A be an adversary against the m-HR problem. We construct adversary B
against the (1-)HR problem as shown in Figure 31.

B(N, g, c)
00 for i ∈ [m]
01 ai

$← [N/4]
02 ci := cai

03 b′ ← A(N, g, c1, ..., cm)
04 return b′

Figure 31: Adversary B against the HR problem for the proof of Lemma 3.

B inputs (N, g, c), where g is a generator of G+
S and c is either a random element

from G+
S or from QR+

N . It samples m random elements ai from [N/4], computes ci as
cai and runs adversary A on input (N, g, c1, ..., cm).

First, note that |G+
S | = S and |QR+

N | = ST , where S and T have only prime factors
that are distinct and greater than 2−δn(κ). Thus, c is a generator of G+

S or QR+
N with

high probability 1−O(2−δn(κ)).
Second, if c is a generator of G+

S resp. QR+
N , then ci := cai , where ai $← [φ(N)/4]

and i ∈ [m], are m random and independent elements in the corresponding group.
As B does not know φ(N), it samples exponents ai from [N/4]. As shown above, the
statistical distance between these (c1, ..., cm) and the input of A in the original m-HR
experiment is bounded by m ·O(2−δn(κ)).

This yields the bound stated in Lemma 3.

GenHR(par)
00 x $← [N/4]
01 X := gx

02 return (pk := X,
sk := x)

EncapsH
HR(pk)

03 r $← [N/4]
04 c := gr

05 K := H(c,Xr)
06 return (c,K)

DecapsH
HR(sk, c)

07 K := H(c, cx)
08 return K

Figure 32: Key encapsulation mechanism KEMHR = (GenHR,EncapsHR,DecapsHR).

Theorem 7. Under the HR assumption and in the random oracle model, KEMHR is
an N-receiver non-committing key encapsulation mechanism. In particular, for any
N -NCKE-CCA adversary A against KEMHR and SimHR that issues at most qE queries
per user to Encaps, qD queries to Decaps and at most qH queries to each random
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oracle Hn, n ∈ [N ], there exists an adversary B against HR with roughly the same
running time such that

AdvN-NCKE-CCA
KEMHR,SimHR

(A) ≤ AdvHR
RSAgen(B) + (N · qE)(qH + qD + 1) ·O(2−δn(κ)) +O(2−n/2) .

Proof. As shown in [HK09], HPS is δn(κ)-entropic. Furthermore, the m-fold subset
membership problem is hard in HPS by definition of the m-HR assumption. Thus,
Theorem 1 yields

AdvN-NCKE-CCA
KEMHR,SimHR

(A) ≤ Advm-HR
RSAgen(B) + (N · qE · qH) · 2−δn(κ) + (N · qE · qD) · 2−δn(κ) .

Applying Lemma 3 yields the bound stated in Theorem 7.

B Full Attack Tables for our AKE Model
In the following, we want to give the complete tables of possible attacks in the FS
and wFS security model. Note that these tables contains a large number of redundant
rows. We do this to justify completeness and point out the security properties. In the
next step, we will distill the tables for the special case of two-message protocols, thus
reducing complexity. We also point out trivial attacks.

B.1 Overview of Allowed Attacks for Full Forward Security

We begin with the complete table of possible attacks for full forward security, which
is given in Table 3. The variables used are explained in Section 4. The structure is as
follows:
– Attack (0) covers that it is considered a valid attack when a session is recreated due

to insufficient randomness. Therefore, if there is more than one partially matching
session to a test session, the adversary may also run a trivial attack.

– Attacks (1)-(8) capture all attacks, where a matching session exists.
– Attacks (9)-(16) capture all attacks, where a partially matching session exists, but
no full matching session.

– Attacks (17)-(24) capture all attacks, where neither a partially nor a full matching
session exists.

We cover all possible combinations of long-term key corruptions and state reveals, also
taking into account when a corruption may happen (modeled by variable peerCorrupted).
Thereby, the allowed attacks include forward security, KCI security, and security against
maximal exposure:
Forward Security is covered, for instance, by attacks (17) and (18), which enable an

active adversary (i.e., |M(sID∗)| = 0) to obtain the long-term secret of one or
both parties. The peer’s long-term secret key will be available after the session
key has been computed.

Key Compromise Impersonation is covered by attacks (21)-(24), where the adver-
sary obtains at least the long-term secret of one party.
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(0) multiple partially matching sessions – – – – – – – – > 1
(1) (long-term, long-term) – – – “In” F F 1 – –
(2) (long-term, long-term) – – – “Re” F F 1 – –
(3) (state, state) F F – “In” – – 1 – –
(4) (state, state) F F – “Re” – – 1 – –
(5) (long-term, state) – F – “In” F – 1 – –
(6) (long-term, state) – F – “Re” – F 1 – –
(7) (state, long-term) F – – “In” – F 1 – –
(8) (state, long-term) F – – “Re” F – 1 – –
(9) (long-term, long-term) – – F “In” F n/a 0 F 1
(10) (long-term, long-term) – – F “Re” F n/a 0 F 1
(11) (state, state) F F – “In” – n/a 0 – 1
(12) (state, state) F F – “Re” – n/a 0 – 1
(13) (long-term, state) – F – “In” F n/a 0 – 1
(14) (long-term, state) – F F “Re” – n/a 0 F 1
(15) (state, long-term) F – F “In” – n/a 0 F 1
(16) (state, long-term) F – – “Re” F n/a 0 – 1
(17) (long-term, long-term) – – F “In” F n/a 0 n/a 0
(18) (long-term, long-term) – – F “Re” F n/a 0 n/a 0
(19) (state, state) F F – “In” – n/a 0 n/a 0
(20) (state, state) F F – “Re” – n/a 0 n/a 0
(21) (long-term, state) – F – “In” F n/a 0 n/a 0
(22) (long-term, state) – F F “Re” – n/a 0 n/a 0
(23) (state, long-term) F – F “In” – n/a 0 n/a 0
(24) (state, long-term) F – – “Re” F n/a 0 n/a 0

Table 3: Full table of attacks for full and weak FS adversaries. For two-message
protocols, a partial matching session can only be of type “Re” and we can exclude
attacks highlighted in green color. Furthermore, for weak FS adversaries we exclude
trivial attacks which are highlighted in blue color. An attack is regarded as an AND
conjunction of variables with specified values as shown in the each line, where “–” means
that this variable can take arbitrary value. “F” means “false”, “n/a” indicates that
there is no state which can be revealed as no (partially) matching session exists.

Maximal Exposure Attacks are covered by the fact that all combinations of long-
term secret and state reveals are allowed, except for those that lead to trivial
attacks (e.g., reveal of long-term key and state of the same party). In particular,
we allow the adversary to obtain both states in attacks (19) and (20).
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Distilled Table for Two-Message Protocols. We consider the full table and
give a distilled version in Table 2 in Section 4. The simplifications are due to the
following reasons:

– Attacks (1) and (2) can be merged by setting the type to arbitrary.
– Attacks (3) and (4) can be removed as the responder does not have a state and thus
this is already captured by attacks (7) and (8).

– Attacks (5) and (6) can be removed for the same reason, they are already captured
by attacks (1) and (2).

– Attacks (7) and (8) can be merged by setting the type to arbitrary and allowing to
reveal both states as only the initiator’s state contains meaningful information.

– Attacks (9), (11), (13) and (15) can be removed as by definition, a partially matching
session can never be of type “In”.

– Attacks (12) and (14) can be removed as the responder does not have a state and
thus these attacks are already captured by attacks (16) and (10).

– Attacks (19) and (22) can be removed as the responder does not have a state and
thus this is already captured by attacks (23) and (18).

– Attack (20) can be removed as the adversary can compute the state on his own and
thus this is already captured by attack (22).

– Attacks (21) and (24) equal attacks (17) and (18) and can be removed as the
adversary can compute the state on his own.

B.2 Overview of Allowed Attacks for Weak Forward Security

Compared to full forward security, weak forward security only provides security against
a passive adversary (i.e., it must hold that |M(sID∗)| = 1) when both secret keys are
revealed. This is the strongest form of forward security that implicitly authenticated
protocols can achieve. Our model covers this in attacks (1) and (2).
Distilled Table for wFS and Two-Message Protocols. We use Table 3 and
distill it such that it considers weak forward security for two-message protocols. The
result is given in Table 1 in Section 4. Column peerCorrupted has been removed as
we no longer consider the time when a corruption happens. We justify the removal of
trivial attacks as follows:

– Attacks (9), (11), (13) and (15) can be removed as by definition, a partial matching
session can never be of type “In”.

– Attacks (17) and (23) have to be removed as the adversary can trivially win by
obtaining the responder’s long-term secret and computing the last message.

– Attacks (18) and (22) have to be removed as the active adversary can trivially win
by impersonating the initiator and choosing its own state for the first message.

Furthermore, we do some optimizations:

– Attacks (1) and (2) can be merged by setting the type to arbitrary.
– Attacks (3) and (4) can be removed as the responder does not have a state and thus
this is already captured by attacks (7) and (8).
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– Attacks (5) and (6) can be removed for the same reason, they are already captured
by attacks (1) and (2).

– Attacks (7) and (8) can be merged by setting the type to arbitrary and allowing to
reveal both states as only the initiator’s state contains meaningful information.

– Attacks (12) and (14) can be removed as the responder does not have a state and
thus these attacks are already captured by attacks (16) and (10).

– Attack (20) can be removed as the the responder does not have a state and thus
this is already captured by attack (24).

170



Appendix C

Authenticated Key
Exchange and Signatures
with Tight Security in the
Standard Model

An extended abstract of this article appears in the proceedings of CRYPTO 2021. The
following version is the full version of this article which is also available in the IACR
ePrint archive, ia.cr/2021/863.

Original Publication
S. Han, T. Jager, E. Kiltz, S. Liu, J. Pan, D. Riepel, S. Schäge. Authenticated Key
Exchange and Signatures with Tight Security in the Standard Model. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 670–700.
Springer, Heidelberg, August 2021. https://doi.org/10.1007/978-3-030-84259-8_-
23

171

https://ia.cr/2021/863
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-84259-8_23




Authenticated Key Exchange and Signatures with
Tight Security in the Standard Model

Shuai Han1,2, Tibor Jager3, Eike Kiltz4, Shengli Liu1,2,5, Jiaxin Pan6, Doreen Riepel4,
Sven Schäge4

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{dalen17,slliu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Bergische Universität Wuppertal, Germany
tibor.jager@uni-wuppertal.de

4 Ruhr-Universität Bochum, Germany
{eike.kiltz,doreen.riepel,sven.schaege}@rub.de

5 Westone Cryptologic Research Center, Beijing 100070, China
6 Department of Mathematical Sciences,

NTNU – Norwegian University of Science and Technology, Trondheim, Norway
jiaxin.pan@ntnu.no

Abstract. We construct the first authenticated key exchange protocols that
achieve tight security in the standard model. Previous works either relied on
techniques that seem to inherently require a random oracle, or achieved only
“Multi-Bit-Guess” security, which is not known to compose tightly, for instance,
to build a secure channel.
Our constructions are generic, based on digital signatures and key encapsulation
mechanisms (KEMs). The main technical challenges we resolve is to determine
suitable KEM security notions which on the one hand are strong enough to yield
tight security, but at the same time weak enough to be efficiently instantiable in
the standard model, based on standard techniques such as universal hash proof
systems.
Digital signature schemes with tight multi-user security in presence of adaptive
corruptions are a central building block, which is used in all known constructions
of tightly-secure AKE with full forward security. We identify a subtle gap in the
security proof of the only previously known efficient standard model scheme by
Bader et al. (TCC 2015). We develop a new variant, which yields the currently
most efficient signature scheme that achieves this strong security notion without
random oracles and based on standard hardness assumptions.

Keywords: Authenticated key exchange, digital signatures, tightness

1 Introduction
A tight security proof establishes a close relation between the security of a cryptosystem
and its underlying building blocks, independent of deployment parameters such as the
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number of users, protocol sessions, issued signatures, etc. This enables a theoretically-
sound instantiation with optimal parameters, without the need to compensate a security
loss by increasing key lengths or group sizes.
AKE. Authenticated key exchange (AKE) protocols enable two parties to authenticate
each other and compute a shared session key. In comparison to many other cryptographic
primitives, standard security models for AKE are extremely complex. Following the
approach of Bellare-Rogaway [BR94] and Canetti-Krawczyk [CK01], a very strong
active adversary is considered, which essentially “carries” all protocol messages between
parties running the protocol and thus is able to modify, replace, replay, drop, or inject
arbitrary messages. Furthermore, the adversary may adaptively corrupt parties and
reveal session keys while adaptively choosing which session(s) to “attack”.

Achieving security in such a strong and complex model gives very strong security
guarantees, but it also makes tightness particularly difficult to achieve. Indeed, most
security proofs of AKE protocols are extremely lossy, often even with a quadratic
security loss in the total number of sessions established over the entire lifetime of the
protocol. Considering for instance the huge number of TLS connections per day in
practice, this loss may be too large to compensate in practice because the resulting
increase of deployment parameters would incur an intolerable performance overhead.
Hence, such protocols could not be instantiated in a theoretically-sound way.

Therefore tight security of AKE protocols is a well-established research area, with
several known constructions [BHJ+15, GJ18, LLGW20, JKRS21, DJ20, DG20]. As
recently pointed out by Jager et al. [JKRS21], some of these constructions [BHJ+15,
GJ18, LLGW20] consider a “Multi-Bit-Guess” (MBG) security experiment, which is
not known to compose tightly with primitives that apply the shared session key, e.g., to
build a secure channel. The standard and well established security notion in the context
of multiple challenges is “Single-Bit Guess” (SBG) security. Unfortunately, the only
known constructions in the SBG model [JKRS21, DJ20, DG20] apply proof techniques
that seem to inherently require the random oracle model [BR93]. For instance, [JKRS21]
is based on non-committing encryption, which is known to be not instantiable without
random oracles [Nie02], whereas [DJ20, DG20] use a similar approach based on adaptive
reprogramming of the random oracle.

Currently, there exists no AKE protocol which achieves tight security in a standard
(SBG) AKE security model, with a security proof in the standard model, without
random oracles, not even an impractical one.
Digital Signatures. Digital signatures are a foundational cryptographic primitive and
often used to build AKE protocols. All known tightly-secure AKE protocols with full for-
ward security [BHJ+15, GJ18, DJ20, DG20, LLGW20, JKRS21] are based on signatures
that provide tight existential unforgeability under chosen-message attacks (EUF-CMA),
but in a multi-user setting and in the presence of an adversary that may adaptively
corrupt users to obtain their secret keys (MU-EUF-CMAcorr security [BHJ+15]). It
is easy to prove that MU-EUF-CMAcorr security is non-tightly implied by standard
EUF-CMA security, but with a linear security loss in the number of users.

The construction of a tightly MU-EUF-CMAcorr secure signature scheme has to
overcome the following, seemingly paradoxical technical problem. On the one hand,
the reduction must be able to output user secret keys to the adversary, to respond to
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adaptive secret key corruption queries. However, it cannot apply a guessing argument,
as this would incur a tightness loss. Therefore it is forced to “know” the secret keys of
all users. On the other hand, it must be able to extract a solution to a computationally
hard problem from a forgery produced by an adversary. This seems to be in conflict
with the fact that the reduction has to know secret keys for all users, as knowledge of
the secret key should enable the reduction to compute a “forged” signature by itself,
without the adversary. In fact, tight multi-user security is known to be impossible for
many signature schemes, for example when the public key uniquely defines the matching
secret key [BJLS16].

Several previous works have developed techniques to overcome this seeming paradox
[Bad14, BHJ+15, GJ18, DGJL21]. Essentially, their approach is to build schemes where
secret keys are not uniquely determined by public parameters, along with a reduction
that exploits this to evade the paradox. However, all currently known constructions
either use the random oracle model, and therefore cannot be used to build tightly-secure
AKE in the standard model, or are based on tree-based signatures [BHJ+15], which
yields signatures with hundreds of group elements and thus would incur even more
overhead than compensating the security loss with larger parameters. Jumping slightly
ahead, we remark that [BHJ+15] also describes a pairing-based signature scheme with
short constant-size signatures, but we identify a gap in the security proof. Hence,
currently there is no practical signature scheme which achieves tight security in the
multi-user setting with adaptive corruptions.

1.1 Contributions

Summarizing the previous paragraphs, we can formulate the following natural questions
related to AKE and signatures:

Do there exist efficient AKEs and signature schemes with tight multi-user security
in the standard model?

Tightly-secure signatures. We identify a subtle gap in the MU-EUF-CMAcorr

security proof of the scheme from [BHJ+15] with constant-size signatures (namely, SIGC
in [BHJ+15, Section 2.3]). We did not find a way to close this gap and therefore develop
a new variant of this scheme and prove tight MU-EUF-CMAcorr security in the standard
model. More precisely, SIGC follows the blueprint of the Blazy-Kiltz-Pan (BKP) identity-
based encryption scheme [BKP14], and transforms an algebraic message authentication
code (MAC) scheme into a signature scheme with pairings. If the MAC is tightly-secure
in a model with adaptive corruptions, so is the signature scheme. We notice, however,
that their MAC does not achieve tight security with adaptive corruptions since the
corruption queries leak too much secret information to the adversary.

To overcome this issue, we borrow recent techniques from tightly-secure hierarchical
identity-based encryption schemes [LP19, LP20] to construct a new MAC scheme that
can be proven tightly secure under adaptive corruptions. Our construction is based on
pairings and general random self-reducible matrix Diffie-Hellman (MDDH) assumptions
[EHK+17]. When instantiated based on the Dk-MDDH assumption (e.g., k-Lin), a
signature consists of 4k+ 1 group elements. That is 5 group elements for k = 1 (SXDH).
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Alice ( sA, sskA, vkA) Bob (sskB , vkB)

Pick random nonce N ←$ {0, 1}λ

(p̂k, ŝk)←$ KEM.Gen
σ1 ← Sign(sskA, (Alice,Bob, p̂k,N))

Verify σ1 and abort if it is invalid
(c,K)←$ Encap(p̂k)

σ2 ← Sign(sskB , (Alice,Bob, p̂k, σ1, c,N))
Verify σ2 and abort if it is invalid

K ← Decap(ŝk, c)

stA ←$ SE.E(sA, ŝk)

N

(p̂k, σ1)

(c, σ2)

Figure 1: The two-message protocol AKE2msg using the “KEM + 2×SIG” approach and
the three-message protocols AKE3msg (including the red parts) and AKEstate

3msg (including
the red and gray parts) using the “Nonce + KEM + 2 × SIG” approach. (AKEstate

3msg
additionally uses a symmetric encryption scheme SE.)

This yields the first tightly MU-EUF-CMAcorr-secure signature in the standard model
with practical efficiency.

We remark that our new signature scheme circumvents known impossibility results
for signatures and MACs [BJLS16, MPS20], since these apply only to schemes with
re-randomizable signatures or re-randomizable secret keys [BJLS16], or deterministic
schemes [MPS20]. Our construction is probabilistic and not efficiently re-randomizable
in the sense of [BJLS16].1

Tightly-secure AKE in the standard model. The classical “key encapsulation
plus digital signatures” (KEM +2×SIG) paradigm to construct AKE protocols gives rise
to efficient protocols and is the basis of many constructions, e.g., [CK01, CF12, GJ18,
DJ20, DG20, LLGW20, JKRS21]. To establish a session key, two parties Alice and Bob
proceed as follows (cf. Figure 1). Alice generates an ephemeral KEM key pair (p̂k, ŝk)
and sends the signed public key to Bob. Bob then uses this public key to encapsulate
a session key, signs the ciphertext, and sends it back to Alice. Alice then obtains the
session key K by decapsulating with the KEM secret key. For example, one can view
the classical “signed Diffie-Hellman” as a specific instantiation of this paradigm, by
considering the Diffie-Hellman protocol as the ElGamal KEM.

Our approach to construct efficient AKE protocols with tight security is based
on this KEM + 2× SIG paradigm. Given a tightly MU-EUF-CMAcorr secure signature
scheme, it remains to determine suitable security notions for the underlying KEM, which
finds a balance between two properties. The security notion must be strong enough to
enable a tight security proof in presence of adaptive session key reveals and possibly
even state reveals. At the same time, it must be weak enough to be achievable in the
standard model. We now sketch the construction of our three AKE protocols along with
the corresponding KEM security notions, see also Figure 2. In terms of AKE security,

1 Our signatures are only re-randomizable over all strings output by the signing algorithm.
The impossibility result from [BJLS16] requires uniform re-randomizability over all strings
accepted by the verification algorithm, which does not hold for our scheme.
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KEMMDDH
[HLLG19] MUC-CCA KEM

MUC-otCCA KEM
(Definition 7) AKE2msg

SIGMDDH
(Section 6.3)

MU-EUF-CMAcorr

SIG
MUSC-otCCA KEM

(Definition 7) AKE3msg

HPSMDDH
(Section 7.3)

ε-MU-SIM KEM
(Definition 9)

IND-mRPA SE
(Definition 4) AKEstate

3msg

Instantiations Building blocks AKE
(Section 5)

+
+ nonce

+ nonce

+

Figure 2: Schematic overview of our AKE constructions.

we consider a generic and versatile security model which provides strong properties, such
as full forward security and key-compromise impersonation (KCI) security. “Partnering”
of oracles is defined based on original key partnering [LS17]. The model is defined in
pseudocode to avoid ambiguity.
– Our first result is a new tight security proof for the two-message protocol AKE2msg,
which follows the KEM+2× SIG paradigm. AKE2msg is exactly the LLGW protocol
[LLGW20] and the main technical difficulty is to adopt the LLGW proof strat-
egy from the “Multi-Bit-Guess” to the standard “Single-Bit-Guess” setting. This
requires significant modifications to the proof outline and the underlying KEM
security definition. Our new proof relies on Multi-User/Challenge one-time CCA
(MUC-otCCA) security for KEMs, allowing the adversary to ask many challenge
queries but only one decapsulation query per user. Even though this is a slightly
weaker version of the standard Multi-User/Challenge CCA (MUC-CCA) security
notion for KEMs (allowing for unbounded decapsulation queries [GHKW16]), the
most efficient instantiations we could find are the MUC-CCA-secure schemes with
tight security from [GHKW16, GHK17, HLLG19].2

– Our second result is a three-message protocol AKE3msg resisting replay attacks,
which extends the KEM + 2× SIG protocol AKE2msg with an additional nonce sent
at the beginning of the protocol (“Nonce + KEM + 2× SIG”). For our security proof
we require the KEM security notion of Multi-User Single-Challenge one-time CCA
(MUSC-otCCA) security, allowing the adversary to ask only one challenge and one
decapsulation query per user. This notion is considerably weaker than MUC-otCCA
security and it is achievable from any universal2 hash proof system [CS02]. (For
example, based on a standard assumption such as Matrix DDH (MDDH) [EHK+17]
which yields highly efficient KEMs.)

– Our third result is a three-message protocol AKEstate
3msg, which extends the Nonce +

KEM+2×SIG protocol AKE3msg by encrypting the state with a symmetric encryption
(SE) scheme. AKEstate

3msg has tight security in a very strong model that even allows the

2 We are aware of the generic constructions of bounded-CCA secure KEMs from CPA-secure
KEMs [CHH+07], but they do not seem to offer tight security in a multi-challenge setting.
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Table 1: Comparison of standard model AKE protocols with full forward security,
where T refers to the number of test queries. Protocols AKEstate

3msg and AKE2msg refer to our
protocols given in Fig. 1, instantiated from Dk-MDDH. The column Communication
counts the communication complexity of the protocols in terms of the number of
group elements, exponents and nonces, where we instantiate all protocols with our new
signature scheme from Section 6.3. The column Security Loss lists the security loss of
the reduction in the “Single-Bit-Guess” (SBG) model, ignoring all symmetric bounds.

Protocol Communication #Msg. Assumption State
Reveal

Security
Loss

BHJKL
[BHJ+15]

11 + 11 3 SXDH no O(λT )(2k2 + 6k + 5) + (6k + 9) Dk-MDDH
LLGW
[LLGW20]

9 + 10 2 SXDH no O(λT )(k2 + 7k + 1) + (6k + 4) Dk-MDDH

AKEstate
3msg

8 + 7 3 SXDH yes O(λ)(5k + 3) + (5k + 2) Dk-MDDH
AKE2msg
(= LLGW)

9 + 10 2 SXDH no O(λ)(k2 + 7k + 1) + (6k + 4) Dk-MDDH

adversary to obtain session states of oracles [CK01]. The fact that the reduction
must be able to respond to adaptive queries for session states by an adversary makes
it significantly more difficult to achieve tight security. Our key technical contribution
is a new “Multi-User SIMulatability” (ε-MU-SIM) security notion for KEMs, which
we also show to be tightly achievable by universal2 hash proof systems. We stress
that the reduction to the security of the symmetric encryption scheme is the only
part of the security proof which is not tight. We tolerate this, since compensating a
security loss for symmetric encryption incurs significantly less performance penalty
than for public key primitives.3

Note that our AKE3msg and AKEstate
3msg use nonce to resist replay attacks and admit

KEM security with one challenge per user. This can also be achieved generically by
assuming synchronized counters between parties, following the approach of [LLGW20].
Consequently, we can also use counter instead of nonce in AKE3msg and AKEstate

3msg, and
obtain two two-message counter-based AKE protocols which have the same efficiency
and security as AKE3msg and AKEstate

3msg, respectively.
Instantiations. Table 1 gives example instantiations of our protocols from universal2
hash proof systems from the MDDH assumption and compares them to known protocols.
The protocols BHJKL [BHJ+15] and LLGW [LLGW20] only offer tight security in the
MBG model which implies security in our standard SBG model with a loss of T , the
number of test queries [JKRS21]. For more details on our instantiations we refer to
Section 7. Note that there are other works which study AKE in the standard model

3 For instance, openssl speed aes shows that AES-256 is only about 1.5 times slower than
AES-128 on a standard laptop computer. Given that the cost of symmetric key operations
is already small in comparison to the public key operations, we consider this as negligible.
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(e.g., [FSXY12, JKSS12]). However, they do not focus on tightness and have a quadratic
security loss.

Technical approach to AKE. In the following, we give a brief overview of our
technical approach to tight security under our SBG-type security definition and show
how our protocols prevent replay attacks and support state reveals.

To obtain an AKE protocol with a tight security reduction in the KEM + 2× SIG
framework, we rely on the tight MU-EUF-CMAcorr security of the signature scheme
to guarantee authentication and deal with corruptions, and on the tight MUC-CCA
security of KEM to deal with session key reveals. To this end, recall that the SBG-style
security game for MUC-CCA security allows multiple encapsulation and decapsulation
queries per user, but considers only a single challenge bit. At the same time, observe
that the reduction algorithm can always use the challenge key (which is either the real
encapsulated key or a random key) as the session key of the simulated AKE protocol. In
combination, these observations immediately lead to a tight security proof for AKE2msg.
We remark that AKE2msg can also be proved secure under an even weaker security
notion for KEM, namely MUC-otCCA, which allows only one decapsulation query per
user. This assumes that parties choose to “close” a session once this session accepts or
rejects. In this way we can guarantee that the adversary has only a single opportunity
to submit a ciphertext per p̂k.

To prevent replay attacks we make use of an exchange of nonces resulting in protocol
AKE3msg. As a byproduct of using nonces (in combination with the signature scheme),
we can now guarantee that the adversary cannot replay any message anymore. This
includes p̂k, and thus we can ensure that the simulator only needs to respond to one
encapsulation query per p̂k in the security game. In this way we can further weaken the
security requirement that we need from the KEM to MUSC-otCCA.

Now, to support state reveals, we use a symmetric encryption scheme SE that is
used to encrypt the ephemeral secret key ŝk of each session, similar to [JKRS21]. More
concretely, we require that the state is computed as st = SE.E(s, ŝk), where s is the
secret key of SE that is made part of the long-term secret key. This modification yields
protocol AKEstate

3msg. Having introduced such a state, we now also consider a security
model that allows the adversary to issue state reveal queries to obtain the state st.
But now the reduction to the MUSC-otCCA security of the KEM cannot work as
before, since the reduction algorithm cannot output SE.E(s, ŝk) to the adversary. A
natural way to address this problem is to make use of the security of SE, and make
the reduction change the state to an encryption of some dummy random key r , i.e.,
st = SE.E(s, r). However, now the SE reduction algorithm is faced with a critical decision:
If the adversary asks a state reveal query, should the reduction output st = SE.E(s, ŝk)
or st = SE.E(s, r)? It seems that both choices are problematic. If the reduction responds
with the encryption of KEM secret key ŝk, then the reduction to the KEM will fail in
case the adversary asks a test query. If on the other hand the reduction outputs an
encryption of a dummy random key, then the reduction will fail in case the adversary
queries the secret key via a corrupt query. To solve this problem, the existing approaches
rely on a non-committing symmetric encryption scheme that is proven secure in the
random oracle model [JKRS21].
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To obtain a tight security supporting state reveals in the standard model, we enhance
the MUSC-otCCA security of KEM to our new ε-MU-SIM-security, so that a symmetric
encryption scheme SE with comparatively weak security guarantees suffices. The idea is
to rely on a security notion for the symmetric encryption scheme that is as weak as
possible while still being able to compensate for this via a stronger KEM. Somewhat
surprisingly, our proof shows that when relying on an ε-MU-SIM-secure KEM, we only
need to require IND-mRPA security (indistinguishability against random plaintext
attacks) from SE. Such a symmetric encryption scheme can be easily instantiated
using any weakly secure (deterministic) encryption scheme like as AES or even using a
weak PRF. Let us now describe ε-MU-SIM-secure KEM in slightly more detail. In a
nutshell, an ε-MU-SIM-secure KEM provides the reduction with access to an additional
encapsulation algorithm Encap∗ that is keyed with the secret key. We have security
requirements as follows:
• Computational indistinguishability between Encap and Encap∗: We require that
the reduction can switch to using Encap∗ without the adversary noticing even
given the secret key ŝk of the KEM. In particular, the resulting indistinguishability
notion must tightly reduce to an underlying security assumption.

• Statistical ε-uniformity: When using the alternative encapsulation mechanism
Encap∗, we require that the encapsulated key in the challenge ciphertext c∗ will be
indistinguishable from random with statistical distance ε (even if a decapsulation
of some distinct ciphertext c 6= c∗ of its choice is given). This is particularly useful
when aiming at tight security reductions.
• Since we want to apply ε-MU-SIM-secure KEMs in a protocol setting with multiple
parties, security must in general hold in a multi-user setting.

Fortunately, such a KEM can be instantiated from universal2 hash proof systems (HPS).
In particular, we show that the ε-MU-SIM-security is implied by the hardness of subset
membership problems and the universal2-property of HPS.

Our new ε-MU-SIM-secure KEM now allows us to avoid the above mentioned
decision when dealing with state reveals and in this way opens a new avenue towards a
tight security reduction. To this end, we use a novel strategy in our security proof.

1. We first switch from using Encap to Encap∗. By the security properties of our
KEM, the adversary cannot notice this, even given ŝk.

2. Next, we replace the session keys of tested sessions with random keys – one user at
a time. We apply a hybrid argument over all users. In the η-th hybrid (η = 1, ..., µ
with µ being the number of users), we replace the test session keys related to the
η-th user with random keys. We can show that this is not recognizable by the
adversary since the key K∗ generated by Encap∗ is statistically close to uniform
even if the adversary gets to see another key for a ciphertext of its choice. We
distinguish the following cases.
Case 1: The adversary corrupts the η-th user. For each session related to this

user, the adversary can either reveal the session state or test this session,
but not both. If the adversary reveals the state, we do not have to replace
the session key at all, so the change is in fact only a conceptual one. If the
session is tested, the adversary does not know the state SE.E(s, ŝk) and thus
we can replace the session key by exploiting the ε-uniformity of Encap∗.
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Case 2: The adversary does not corrupt the η-th user. In this case, we rely on
the IND-mRPA security of SE and replace ŝk in the encrypted state with a
random dummy key for this user. Then, we can use ε-uniformity to replace
all tested keys for that user with random keys, as the state does not contain
any information about ŝk. After that, we have to switch back to using the
original state encryption mechanism and encrypt the real secret key ŝk,
getting ready for the next hybrid.

After µ hybrids, we change all tested keys to random. At this point the adversary
has no advantage in the security game.

Overall, this security proof loses a factor of 2µ – but only when reducing to the IND-
mRPA security of the symmetric encryption scheme. All other steps of the proof feature
tight security reductions.

2 Preliminaries

Let ∅ denote an empty string. If x is defined by y or the value of y is assigned to x, we
write x := y. For µ ∈ N, define [µ] := {1, 2, ..., µ}. Denote by x ←$ X the procedure of
sampling x from set X uniformly at random. If D is distribution, x← D means that x
is sampled according to D. All our algorithms are probabilistic unless states otherwise.
We use y ←$ A(x) to define the random variable y obtained by executing algorithm
A on input x. We use y ∈ A(x) to indicate that y lies in the support of A(x). If A is
deterministic we write y ← A(x). We also use y ← A(x; r) to make the random coins r
used in the probabilistic computation explicit. Denote by T(A) the running time of
A. For two distributions X and Y , the statistical distance between them is defined by
∆(X;Y ) := 1

2 ·
∑
x |Pr[X = x]− Pr[Y = x]|, and conditioned on Z = z, the statistical

distance between X and Y is denoted by ∆(X;Y |Z = z). For 0 ≤ ε ≤ 1, X and Y are
said to be ε-close, denoted by X ≈ε Y , if ∆(X;Y ) ≤ ε.

Definition 1 (Collision-resistant hash functions). A family of hash functions H is
collision resistant if for any adversary A,

Advcr
H(A) := Pr[x1 6= x2 ∧H(x1) = H(x2)|(x1, x2)←$ A(H), H ←$ H].

2.1 Digital Signature

Definition 2 (SIG). A signature (SIG) scheme SIG = (SIG.Setup,SIG.Gen,Sign, Ver)
is defined by the following four algorithms.
– SIG.Setup : The setup algorithm outputs a public parameter ppSIG, which defines a
message spaceM, a signature space Σ, and verification key & signing key spaces
VK × SK.

– SIG.Gen(ppSIG) : The key generation algorithm takes as input ppSIG and outputs a
pair of keys (vk, ssk) ∈ VK × SK.

– Sign(ssk,m) : Taking as input a signing key ssk and a message m ∈M, the signing
algorithm outputs a signature σ ∈ Σ.
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– Ver(vk,m, σ) : Taking as input a verification key vk, a message m and a signature
σ, the deterministic verification algorithm outputs a bit indicating whether σ is a
valid signature for m w.r.t. vk.

We require that for all ppSIG ∈ SIG.Setup, (vk, ssk) ∈ SIG.Gen(ppSIG), we have Ver(vk,m,
Sign(ssk, m)) = 1.

Below we present the security notion of existential unforgeability with adaptive
corruptions in the multi-user setting (MU-EUF-CMAcorr) for SIG, which was originally
defined in [BHJ+15].
Definition 3 (MU-EUF-CMAcorr Security for SIG). To a signature scheme SIG, the
number of users µ ∈ N, and an adversary A we associate the advantage function
Advmu-corr

SIG,µ (A) := Pr[Expmu-corr
SIG,µ,A ⇒ 1], where Expmu-corr

SIG,µ,A is defined in Figure 3.

Expmu-corr
SIG,µ,A:

ppSIG ←$ SIG.Setup
For i ∈ [µ]: (vki, sski) ←$ SIG.Gen(ppSIG);

Mi := ∅ �Record messages from signing queries
Scorr := ∅ �Record corruption queries
(i∗,m∗, σ∗) ←$ AOSign(·,·),OCorr(·)(ppSIG,VKList := {vki}i∈[µ])

If (i∗ /∈ Scorr) ∧ (m∗ /∈Mi∗) ∧ (Ver(vki∗ ,m∗, σ∗) = 1): Return 1
Else: Return 0

OSign(i,m):
σ ←$ Sign(sski,m)
Mi :=Mi ∪ {m}
Return σ

OCorr(i):
Scorr := Scorr ∪ {i}
Return sski

Figure 3: The MU-EUF-CMAcorr security experiment Expmu-corr
SIG,µ,A for SIG.

2.2 Symmetric Encryption

Definition 4 (SE). A symmetric encryption (SE) scheme SE = (E,D) is associated
with a key space K, a plaintext spaceM and a ciphertext space C. It is defined by the
following two algorithms.
– E(k,m) : Taking as input a symmetric key k ∈ K and a plaintext m ∈ M, the
encryption algorithm outputs a ciphertext c ∈ C.

– D(k, c) : Taking as input a symmetric key k ∈ K and a ciphertext c ∈ C, the
decryption algorithm outputs a plaintext m ∈M.

We require that for all k ∈ K, all m ∈M, we have D(k,E(k,m)) = m.

Below we define the indistinguishability against multi-challenge Random Plaintext
Attacks (IND-mRPA security) for SE, which asks indistinguishability of encryptions of
random plaintexts and encryptions of dummy (random) plaintexts.
Definition 5 (IND-mRPA Security for SE). To a symmetric encryption scheme SE,
the number of users µ ∈ N, and an adversary A we associate the advantage function

Advmrpa
SE,µ(A) =

∣∣∣Pr
[
A
(
{mi, c

(0)
i }i∈[µ]

)
⇒ 1

]
− Pr

[
A
(
{mi, c

(1)
i }i∈[µ]

)
⇒ 1

]∣∣∣ ,
where k ←$ K, mi, ri ←$ M, c(0)

i ←$ E(k,mi) and c(1)
i ←$ E(k, ri) for ∀i ∈ [µ].
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Remark 1. We note that IND-mRPA is weaker than the traditional IND-CPA (indistin-
guishability against Chosen Plaintext attacks) security notion. In particular, IND-mRPA
is achievable by deterministic SEs, while IND-CPA necessarily requires a probabilistic
encryption. Consequently, IND-mRPA secure SE admits more practical instantiations.
For example, a PRF or even a weak PRF [NR97] itself is an IND-mRPA secure SE.

3 Security Notions for KEMs

In the section, we present definitions of Key Encapsulation Mechanism (KEM) and its
security notions.

Definition 6 (KEM). A key encapsulation mechanism (KEM) scheme KEM =
(KEM.Setup, KEM.Gen,Encap,Decap) consists of four algorithms:
– KEM.Setup : The setup algorithm outputs public parameters ppKEM, which determine
an encapsulation key space K, public key & secret key spaces PK × SK, and a
ciphertext space CT .

– KEM.Gen(ppKEM) : Taking ppKEM as input, the key generation algorithm outputs
a pair of public key and secret key (pk, sk) ∈ PK × SK. W.l.o.g., we assume
that KEM.Gen first samples sk ←$ SK uniformly, and then computes pk from sk
deterministically via a polynomial-time algorithm KEM.PK, i.e., pk := KEM.PK(sk).
This is reasonable since we can always take the randomness used by KEM.Gen as
the secret key.

– Encap(pk) : Taking pk as input, the encapsulation algorithm outputs a pair of
ciphertext c ∈ CT and encapsulated key K ∈ K.

– Decap(sk, c) : Taking as input sk and c, the deterministic decapsulation algorithm
outputs K ∈ K ∪ {⊥}.

We require that for all ppKEM ∈ KEM.Setup, (pk, sk) ∈ KEM.Gen(ppKEM), (c,K) ∈
Encap(pk), it holds that Decap(sk, c) = K.

We define two security notions for KEMs, the first one in the Multi-User/Challenge
(MUC) setting, the second one in the Multi-User and Single Challenge (MUSC) setting.
Both notions only allow for one single decapsulation query per user.

Definition 7 (MUC-otCCA/MUSC-otCCA Security for KEM). To KEM, the number of
users µ ∈ N, and an adversary A we associate the advantage functions Advmuc-otcca

KEM,µ (A) :=∣∣Pr[Expmuc-otcca
KEM,µ,A ⇒ 1] − 1

2
∣∣ and Advmusc-otcca

KEM,µ (A) :=
∣∣Pr[Expmusc-otcca

KEM,µ,A ⇒ 1] − 1
2
∣∣, where

the experiments are defined in Figure 4.

Below we recall the definition of the diversity property from [LLGW20].

Definition 8 (γ-Diversity of KEM). A KEM scheme KEM is called γ-diverse if for
all ppKEM ∈ KEM.Setup, it holds that

Pr
[

(pk, sk) ←$ KEM.Gen(ppKEM);
r, r′ ←$ R; (c,K)← Encap(pk; r); (c′,K ′)← Encap(pk; r′) : K = K ′

]
≤ 2−γ ,
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Expmuc-otcca
KEM,µ,A, Expmusc-otcca

KEM,µ,A :

ppKEM ←$ KEM.Setup
For i ∈ [µ]: (pki, ski) ←$ KEM.Gen(ppKEM)
EncList := ∅ �Records the encapsulation queries
b ←$ {0, 1} �Single challenge bit
PKList := {pki}i∈[µ]

b′ ←$ AO
b
Encap(·),ODecap(·,·)(ppKEM,PKList)

If b′ = b: Return 1; Else: Return 0

ObEncap(i): �at most once per user i
(c,K) ←$ Encap(pki)
EncList := EncList ∪ {(i, c)}
K0 := K; K1 ←$ K
Return (c,Kb)

ODecap(i, c′): � at most once per user i
If (i, c′) /∈ EncList:

Return K′ ← Decap(ski, c′)
Else: Return ⊥

Figure 4: The MUC-otCCA security experiment Expmuc-otcca
KEM,µ,A and the MUSC-otCCA

security experiment Expmusc-otcca
KEM,µ,A of KEM, where in the latter the adversary can query

the encapsulation oracle only once for each user.

Pr
[
(pk, sk) ←$ KEM.Gen(ppKEM); (pk′, sk′)←$ KEM.Gen(ppKEM);

r ←$ R; (c,K)← Encap(pk; r); (c′,K ′)← Encap(pk′; r) : K = K ′
]
≤ 2−γ ,

where R is the randomness space of Encap. If γ = log |K|, then KEM is perfectly diverse.

We also propose a new security notion for KEMs called ε-MU-SIM (ε-multi-user simulat-
able) security. Jumping ahead, ε-MU-SIM secure KEMs will serve as the main building
block in our generic AKE construction with state reveal later. We present the formal
definition of ε-MU-SIM security (Definition 9) and in Section 7.2, we present simple
constructions of ε-MU-SIM secure KEMs from universal2-HPS.

Informally, ε-MU-SIM security requires that there exists a simulated encapsulation
algorithm Encap∗(sk) which returns simulated ciphertext/key pairs (c∗,K∗) satisfying
the following two properties. Firstly, they should be computationally indistinguishable
from real ciphertext/key pairs. Secondly, given c∗ and an arbitrary single decryption
query, the simulated key K∗ should be ε-close to uniform.
Definition 9 (ε-MU-SIM Security for KEM). We require that there exists a simulated
encapsulation algorithm Encap∗(sk) which takes the secret key sk as input, and outputs
a pair of simulated c∗ ∈ CT and simulated K∗ ∈ K. For ε-uniformity we require that
for any (unbounded) adversary A, it holds that∣∣ Pr[c ←$ A(pk, c∗,K∗) : c 6= c∗ ∧ A(pk, c∗,K∗,Decap(sk, c))⇒ 1]

− Pr[c ←$ A(pk, c∗, R) : c 6= c∗ ∧ A(pk, c∗, R,Decap(sk, c))⇒ 1]
∣∣ ≤ ε, (1)

where the probability is over ppKEM ←$ KEM.Setup, (pk, sk) ←$ KEM.Gen(ppKEM), (c∗,
K∗) ←$ Encap∗(sk), R ←$ K and the internal randomness of A.

Furthermore, to KEM, a simulated encapsulation algorithm Encap∗, an adversary A,
and µ ∈ N we associate the advantage function Advmu-sim

KEM,Encap∗,µ(A) :=∣∣∣Pr
[
A
(
{pki, ski, c(0)

i ,K
(0)
i }i∈[µ]

)
⇒ 1

]
− Pr

[
A
(
{pki, ski, c(1)

i ,K
(1)
i }i∈[µ]

)
⇒ 1

]∣∣∣ , (2)

where ppKEM ←$ KEM.Setup, (pki, ski) ←$ KEM.Gen(ppKEM), (c(0)
i ,K

(0)
i ) ←$ Encap(pki),

and (c(1)
i , K

(1)
i )←$ Encap∗(ski) for ∀i ∈ [µ].
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Note that ε-MU-SIM security tightly implies MUSC-otCCArev&corr security which is
a stronger variant of MUSC-otCCA security supporting key reveal and user corrupt
queries. Reveal and corrupt queries can be tolerated since in the security experiment
(2), adversary A also obtains secret keys sk1, . . . , skµ. By (1) one can see that one single
decapsulation query is supported. In particular, ε-MU-SIM security tightly implies
MUSC-otCCA security. In Section 7 we will define universal2 hash proof systems and
show how they imply ε-MU-SIM secure KEMs.

4 Authenticated Key Exchange
4.1 Definition of Authenticated Key Exchange

Definition 10 (AKE). An authenticated key exchange (AKE) scheme AKE=(AKE.Setup,
AKE.Gen,AKE.Protocol) consists of two probabilistic algorithms and an interactive pro-
tocol.
– AKE.Setup : The setup algorithm outputs the public parameter ppAKE.
– AKE.Gen(ppAKE, Pi) : The generation algorithm takes as input ppAKE and a party
Pi, and outputs a key pair (pki, ski).

– AKE.Protocol(Pi(resi) 
 Pj(resj)) : The protocol involves two parties Pi and
Pj, who have access to their own resources, resi := (ski, ppAKE, {pku}u∈[µ]) and
resj := (skj , ppAKE, {pku}u∈[µ]), respectively. Here µ is the total number of users.
After execution, Pi outputs a flag Ψi ∈ {∅,accept, reject}, and a session key ki
(ki might be the empty string ∅), and Pj outputs (Ψj , kj) similarly.

Correctness of AKE. For any distinct and honest parties Pi and Pj , they share
the same session key after the execution of AKE.Protocol(Pi(resi) 
 Pj(resj)), i.e.,
Ψi = Ψj = accept, ki = kj 6= ∅.

4.2 Security Model of AKE

We will adapt the security model formalized by [BHJ+15, LS17, GJ18], which in turn
followed the model proposed by Bellare and Rogaway [BR94]. We also include replay
attacks [LLGW20] and multiple test queries with respect to the same random bit
[JKRS21].

First, we will define oracles and their static variables in the model. Then we describe
the security experiment and the corresponding security notions.
Oracles. Suppose there are at most µ users P1, P2, ..., Pµ, and each user will involve
at most ` instances. Pi is formalized by a series of oracles, π1

i , π
2
i , ..., π

`
i . Oracle πsi

formalizes Pi’s execution of the s-th protocol instance.
Each oracle πsi has access to Pi’s resource resi := (ski, ppAKE,PKList := {pku}u∈[µ]).

πsi also has its own variables varsi := (stsi ,Pidsi , ksi ,Ψs
i ).

– stsi : State information that has to be stored between two rounds in order to execute
the protocol.

– Pidsi : The intended communication peer’s identity.
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– ksi ∈ K: The session key computed by πsi . Here K is the session key space. We
assume that ∅ ∈ K.

– Ψs
i ∈ {∅,accept, reject}: Ψs

i indicates whether πsi has completed the protocol
execution and accepted ksi .

At the beginning, (stsi ,Pidsi , ksi ,Ψs
i ) are initialized to (∅, ∅, ∅, ∅). We declare that ksi 6= ∅

if and only if Ψs
i = accept.

Security Experiment. To define the security notion of AKE, we first formalize the se-
curity experiment ExpAKE,µ,`,A with the help of the oracles defined above. ExpAKE,µ,`,A is
a game played between an AKE challenger C and an adversary A. C will simulate the
executions of the ` protocol instances for each of the µ users with oracles πsi . We give a
formal description in Figure 5.

Adversary A may copy, delay, erase, replay, and interpolate the messages transmitted
in the network. This is formalized by the query Send to oracle πsi . With Send, A can
send arbitrary messages to any oracle πsi . Then πsi will execute the AKE protocol
according to the protocol specification for Pi. The StateReveal(i, s) oracle allows A to
reveal πsi ’s session state.

We also allow the adversary to observe session keys of its choices. This is reflected
by a SessionKeyReveal query to oracle πsi .

A Corrupt query allows A to corrupt a party Pi and get its long-term secret key ski.
With a RegisterCorrupt query, A can register a new party without public key certification.
The public key is then known to all other users.

We introduce a Test query to formalize the pseudorandomness of ksi . Therefore, the
challenger chooses a bit b←$ {0, 1} at the beginning of the experiment. When A issues
a Test query for πsi , the oracle will return ⊥ if the session key ksi is not generated yet.
Otherwise, πsi will return ksi or a truly random key, depending on b. The task of A is to
tell whether the key is the true session key or a random key. The adversary is allowed
to make multiple test queries.

Formally, the queries by A are described as follows.
– Send(i, s, j,msg): If msg = >, it means that A asks oracle πsi to send the first

protocol message to Pj . Otherwise, A impersonates Pj to send message msg to πsi .
Then πsi executes the AKE protocol with msg as Pi does, computes a message msg′,
and updates its own variables varsi = (stsi ,Pidsi , ksi ,Ψs

i ). The output message msg′ is
returned to A.
If Send(i, s, j,msg) is the τ -th query asked by A and πsi changes Ψs

i to accept after
that, then we say that πsi is τ -accepted.

– Corrupt(i): C reveals party Pi’s long-term secret key ski to A. After corruption,
π1
i , ..., π

`
i will stop answering any query from A.

If Corrupt(i) is the τ -th query asked by A, we say that Pi is τ -corrupted.
If A has never asked Corrupt(i), we say that Pi is ∞-corrupted.

– RegisterCorrupt(i, pki): It means thatA registers a new party Pi (i > µ). C distributes
(Pi, pki) to all users. In this case, we say that Pi is 0-corrupted.

– StateReveal(i, s): The query means that A asks C to reveal πsi ’s session state. C
returns stsi to A.
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ExpAKE,µ,`,A:
ppAKE ← AKE.Setup
For i ∈ [µ]:

(pki, ski)← AKE.Gen(ppAKE, Pi);
crpi := false �Corruption variable

PKList := {pki}i∈[µ]; b ←$ {0, 1}
For (i, s) ∈ [µ]× [`]:

varsi := (stsi ,Pidsi , ksi ,Ψs
i ) := (∅, ∅, ∅, ∅);

Aflagsi := false �Whether Pidsi is corrupted when πsi accepts
T si := false; kRevsi := false � Test, Key Reveal variables
stRevsi := false, FirstAccsi := ∅
� State Reveal & First Acceptance variables

b∗ ← AOAKE(·)(ppAKE,PKList)

WinAuth := false
WinAuth := true, If ∃(i, s) ∈ [µ]× [`] s.t.
(1) Ψs

i = accept �πsi is τ -accepted
(2) Aflagsi = false �Pj is τ̂ -corrupted with j := Pidsi and τ̂ > τ
(3) (3.1) ∨ (3.2) ∨ (3.3). Let j := Pidsi

(3.1) @ t ∈ [`] s.t. Partner(πsi ← πtj)
(3.2) ∃ t ∈ [`], (j′, t′) ∈ [µ]× [`] with (j, t) 6= (j′, t′) s.t.

Partner(πsi ← πtj) ∧ Partner(πsi ← πt
′

j′)
(3.3) ∃ t ∈ [`], (i′, s′) ∈ [µ]× [`] with (i, s) 6= (i′, s′) s.t.

Partner(πsi ← πtj) ∧ Partner(πs
′

i′ ← πtj) �Replay attacks

WinInd := false
If b∗ = b:

WinInd := true; Return 1
Else: Return 0

Partner(πsi ← πtj): �Checking whether Partner(πsi ← πtj)
If πsi sent the first message and ksi = K(πsi , πtj) 6= ∅: Return 1
If πsi received the first message and ksi = K(πtj , πsi ) 6= ∅: Return 1
Return 0

πsi (msg, j):
�πsi executes AKE according to the protocol specification
If Pidsi = ∅: Pidsi := j
If Pidsi = j:

πsi receives msg and uses resi, varsi to generate the next
message msg′ of AKE, and updates (stsi ,Pidsi , ksi ,Ψs

i );
If msg = >: πsi generates the first message msg′ as initiator;
If msg is the last message of AKE: msg′ := ∅;
Return msg′

If Pidsi 6= j: Return ⊥

OAKE(query):
If query=RegisterCorrupt(u, pku):

If u ∈ [µ]: Return ⊥
PKList := PKList ∪ {pku}
crpu := true
Return PKList

OAKE(query):
If query=Send(i, s, j,msg):

If Ψs
i = accept: Return ⊥

msg′ ← πsi (msg, j)
If Ψs

i = accept:
If crpj = true: Aflagsi := true;
� Determine whether πsi accepts before its partner
If crpj = false ∧ ∃t ∈ [`] s.t. Partner(πsi ← πtj):

If Ψt
j 6= accept:
FirstAccsi := true; FirstAcctj := false

If Ψt
j = accept:
FirstAccsi := false; FirstAcctj := true

Return msg′

If query=Corrupt(i):
If i 6∈ [µ]: Return ⊥
For s ∈ [`]

If FirstAccsi = false ∧ stRevsi = true:
If T si = true: Return ⊥; �avoid TA6
If ∃t ∈ [`] s.t. Partner(πtj ← πsi ):

If T tj = true: Return ⊥; �avoid TA7
crpi := true
Return ski

If query=SessionKeyReveal(i, s):
If Ψs

i 6= accept: Return ⊥
If T si = true: Return ⊥ �avoid TA2
Let j := Pidsi
If ∃t ∈ [`] s.t. Partner(πsi ↔ πtj):

If T tj = true: Return ⊥ �avoid TA4
kRevsi := true; Return ksi

If query=StateReveal(i, s)
If FirstAccsi = false ∧ crpi = true:

If T si = true: Return ⊥; �avoid TA6
Let j := Pidsi
If ∃t ∈ [`] s.t. Partner(πtj ← πsi ):

If T tj = true: Return ⊥; �avoid TA7
stRevsi := true; Return stsi

If query=Test(i, s):
If Ψs

i 6= accept ∨ Aflagsi = true ∨ kRevsi = true
∨ T si = true: Return ⊥ �avoid TA1, TA2, TA3

If FirstAccsi = false:
If crpi = true ∧ stRevsi = true:

Return ⊥ �avoid TA6
Let j := Pidsi
If ∃t ∈ [`] s.t. Partner(πsi ↔ πtj) :

If kRevtj = true ∨ T tj = true:
Return ⊥ �avoid TA4, TA5

If ∃t ∈ [`] s.t. Partner(πsi ← πtj) :
If FirstAcctj = false ∧ crpj = true
∧ stRevtj = true: Return ⊥ �avoid TA7

T si := true; k0 := ksi ; k1 ←$ K; Return kb

Figure 5: The security experiments ExpAKE,µ,`,A, Expreplay
AKE,µ,`,A (both without red

text) and Expreplay, state
AKE,µ,`,A (with red text). The list of trivial attacks is given in Table 2.
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– SessionKeyReveal(i, s): The query means that A asks C to reveal πsi ’s session key. If
Ψs
i 6= accept, C returns ⊥. Otherwise, C returns the session key ksi of πsi .

– Test(i, s): If Ψs
i 6= accept, C returns ⊥. Otherwise, C sets k0 = ksi , samples k1 ←$ K,

and returns kb to A. We require that A can ask Test(i, s) to each oracle πsi only once.

Informally, the pseudorandomness of ksi asks that any PPT adversary A with access to
Test(i, s) cannot distinguish ksi from a uniformly random key. Yet, we have to exclude
some trivial attacks. We will define them later and first introduce partnering.

Definition 11 (Original Key [LS17]). For two oracles πsi and πtj, the original key,
denoted as K(πsi , πtj), is the session key computed by the two peers of the protocol under
a passive adversary only, where πsi is the initiator.

Remark 2. We note that K(πsi , πtj) is determined by the identities of Pi and Pj and the
internal randomness.

Definition 12 (Partner [LS17]). Let K(·, ·) denote the original key function. We say
that an oracle πsi is partnered to πtj , denoted as Partner(πsi ← πtj)3, if one of the following
requirements holds:
– πsi has sent the first message and ksi = K(πsi , πtj) 6= ∅, or
– πsi has received the first message and ksi = K(πtj , πsi ) 6= ∅.

We write Partner(πsi ↔ πtj) if Partner(πsi ← πtj) and Partner(πtj ← πsi ).

Trivial Attacks. In order to prevent the adversary from trivial attacks, we keep track
of the following variables for each party Pi and oracle πsi :
– crpi: whether Pi is corrupted.
– Aflagsi : whether the intended partner is corrupted when πsi accepts.
– T si : whether πsi was tested.
– kRevsi : whether the session key ksi was revealed.
– stRevsi : whether the session state stsi was revealed.
– FirstAccsi : whether Pi or its partner is the first to accept the key in the session.

Based on that we give a list of trivial attacks TA1-TA7 in Table 2.
Remark 3. We introduced variable FirstAcc to indicate whether the party or its partner
is the first to accept the key. This is used to determine whether the state of an oracle is
allowed to be revealed when the oracle or its partner is tested.
– In general, the session key of the party which accepts the key after its partner (i.e.,
FirstAcc = false), by the correctness of AKE, must be identical to its partner’s.
Thus, the session key is fully determined by the state and long-term key of that
party (as well as transcripts).

– However, the session key of the party which accepts the key before its partner (i.e.,
FirstAcc = true) might involve fresh randomness beyond its state and long-term
key.

3 The arrow notion πsi ← πtj means πsi (not necessarily πtj) has computed and accepted the
original key.
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Table 2: Trivial attacks TA1-TA7 for security experiments ExpAKE,µ,`,A,
Expreplay

AKE,µ,`,A and Expreplay, state
AKE,µ,`,A , where TA6 and TA7 are only defined in Expreplay, state

AKE,µ,`,A .
Note that “Aflagsi = false” is implicitly contained in TA2-TA7 because of TA1.

Types Trivial attacks Explanation

TA1 T si = true ∧ Aflagsi = true πsi is tested but πsi ’s partner is corrupted
when πsi accepts session key ksi

TA2 T si = true ∧ kRevsi = true πsi is tested and its session key ksi is revealed

TA3 T si = true when Test(i, s) is queried Test(i, s) is queried at least twice

TA4 T si = true ∧ Partner(πsi ↔ πtj) ∧ kRevtj = true πsi is tested, πsi and πtj are partnered to
each other, and πtj ’s session key ktj is revealed

TA5 T si = true ∧ Partner(πsi ↔ πtj) ∧ T tj = true πsi is tested, πsi and πtj are partnered
to each other, and πtj is tested

TA6 T si = true ∧ FirstAccsi = false
∧ stRevsi = true ∧ crpi = true

πsi is tested, πsi accepts its key
after its partner, and πsi is both

corrupted and has its state stsi revealed

TA7
T si = true ∧ Partner(πsi ← πtj)

∧ FirstAcctj = false
∧ crpj = true ∧ stRevtj = true

πsi is tested, πsi accepts its session key
before its partner, but its partner πtj is

both corrupted and state revealed

Thus, it is a trivial attack to reveal the state and the long-term key of the same oracle,
if the oracle or its partner is tested and the oracle accepts the key after its partner (i.e.,
FirstAcc = false). This is a minimal trivial attack regarding state reveal4, and it is
formalized as TA6 and TA7 in Table 2.
The following definition also captures replay attacks. Given Partner(πs′i′ ← πtj), a
successful replay attack means that A resends to πsi the messages, which were sent from
πtj to πs

′

i′ , and πsi is fooled to compute a session key, i.e., Partner(πsi ← πtj). Note that
a stateless 2-pass AKE protocol cannot be secure against replay attacks [LLGW20].
Therefore, we also define security without replay attacks in Definition 15.

Furthermore, we distinguish between security with state reveals (Definition 13) and
without state reveals (Definition 14), where in the latter the adversary cannot query
the session state of an oracle.

Definition 13 (Security of AKE with Replay Attacks and State Reveal). Let µ be
the number of users and ` the maximum number of protocol executions per user. The
security experiment Expreplay, state

AKE,µ,`,A (see Fig. 5) is played between the challenger C and
the adversary A.

1. C runs AKE.Setup to get AKE public parameter ppAKE.
2. For each party Pi, C runs AKE.Gen(ppAKE, Pi) to get the long-term key pair

(pki, ski). Next it chooses a random bit b ←$ {0, 1} and provides A with the public
parameter ppAKE and the list of public keys PKList := {pki}i∈[µ].

3. A asks C Send, Corrupt, RegisterCorrupt, SessionKeyReveal, StateReveal and Test
queries adaptively.

4 It is also possible to define the trivial attack regardless of FirstAcc, but our definition of
TA6 and TA7 is minimal and makes our security model stronger.
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4. At the end of the experiment, A terminates with an output b∗.

• Strong Authentication. Let WinAuth denote the event that A breaks authenti-
cation in the security experiment. WinAuth happens iff ∃(i, s) ∈ [µ]× [`] s.t.
(1) πsi is τ -accepted.
(2) Pj is τ̂ -corrupted with j := Pidsi and τ̂ > τ .
(3) Either (3.1) or (3.2) or (3.3) happens5. Let j := Pidsi .

(3.1) There is no oracle πtj that πsi is partnered to.
(3.2) There exist two distinct oracles πtj and πt′j′ , to which πsi is partnered.
(3.3) There exist two oracles πs′i′ and πtj with (i′, s′) 6= (i, s), such that both

πsi and πs′i′ are partnered to πtj.
• Indistinguishability. Let WinInd denote the event that A breaks indistinguisha-
bility in the experiment Expreplay, state

AKE,µ,`,A above. Let b∗ be A’s output. Then WinInd
happens iff b∗ = b. Trivial attacks are already considered during the execution of
the experiment. A list of trivial attacks is given in Table 2.

Note that Expreplay, state
AKE,µ,`,A ⇒ 1 iff WinInd happens. Hence, the advantage of A is defined

as
Advreplay, state

AKE,µ,` (A) : = max{Pr[WinAuth], |Pr[WinInd]− 1/2|}

= max{Pr[WinAuth], |Pr[Expreplay, state
AKE,µ,`,A ⇒ 1]− 1/2|}.

Definition 14 (Security of AKE with Replay Attacks and without State Reveal). The
security experiment Expreplay

AKE,µ,`,A (see Fig. 5) is defined like Expreplay, state
AKE,µ,`,A except that we

disallow state reveal queries. Similarly, the advantage of an adversary A in Expreplay
AKE,µ,`,A

is defined as

Advreplay
AKE,µ,`(A) := max{Pr[WinAuth], |Pr[Expreplay

AKE,µ,`,A ⇒ 1]− 1/2|}.

Definition 15 (Security of AKE without Replay Attack and State Reveal). The
security experiment ExpAKE,µ,`,A (see Fig. 5) is defined like Expreplay, state

AKE,µ,`,A except that we
disallow replay attacks and state reveal queries. Similarly, the advantage of an adversary
A in ExpAKE,µ,`,A is defined as

AdvAKE,µ,`(A) := max{Pr[WinAuth], |Pr[ExpAKE,µ,`,A ⇒ 1]− 1/2|}.

Remark 4 (Perfect Forward Security and KCI Resistance). The security model of
AKE supports (perfect) forward security (a.k.a. forward secrecy [Gün90]).That is, if
Pi or its partner Pj has been corrupted at some moment, then the exchanged session
keys computed before the corruption remain hidden from the adversary. Meanwhile,
πsi may be corrupted before Test(i, s), which provides resistance to key-compromise
impersonation (KCI) attacks [Kra05].

5 Given (1) ∧ (2), (3.1) indicates a successful impersonation of Pj , (3.2) suggests one instance
of Pi has multiple partners, and (3.3) corresponds to a successful replay attack.
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5 AKE Protocols

We construct AKE protocols AKE2msg, AKE3msg and AKEstate
3msg from a signature scheme

SIG and a key encapsulation mechanism KEM. Additionally, we use a symmetric encryp-
tion scheme SE with key space KSE to encrypt the state in protocol AKEstate

3msg. Apart
from that, AKEstate

3msg and AKE3msg are the same. The protocols are given in Figure 6.
The setup algorithm generates the public parameter ppAKE := (ppSIG, ppKEM) by

running SIG.Setup and KEM.Setup. The key generation algorithm inputs the public
parameter and a party Pi and generates a signature key pair (vki, sski). In AKEstate

3msg, it
also chooses a symmetric key si uniformly from the key space KSE. It returns the public
key vki and the secret key (sski, si).

The protocol is executed between two parties Pi and Pj . Each party has access
to their own resources resi and resj which contain the corresponding secret key, the
public parameter and a list PKList consisting of the public keys of all parties. Each
party initializes its local variables Ψi, ki and sti with the empty string. To initiate a
session in AKE3msg and AKEstate

3msg, the party Pj chooses a bitstring N uniformly from
{0, 1}λ and sends it to Pi. The next message and the first message in protocol AKE2msg
is sent by Pi. It generates an ephemeral key pair (p̂k, ŝk) by running KEM.Gen(ppKEM)
and computes a signature σ1 over the identities of Pi and Pj , the ephemeral public key
and the nonce (only in AKE3msg and AKEstate

3msg). When using state encryption, it also
encrypts the ephemeral secret key using its symmetric key si and stores the ciphertext
in sti. It then sends (p̂k, σ1) to Pj . Pj verifies the signature using vki and rejects if it
is not valid. Otherwise, it continues the protocol by computing (c,K)←$ Encap(p̂k).
It computes a signature σ2 over the identities as well as the previous message, c and
the nonce (only in AKE3msg and AKEstate

3msg). Pj accepts the session key and sets kj to K.
It sends (c, σ2) to Pi. Pi verifies the signature and rejects if it is invalid. Otherwise, it
retrieves the ephemeral secret key by decrypting the state, computes the session key K
from c and accepts.

Correctness. Correctness of AKE2msg, AKE3msg and AKEstate
3msg follows directly from the

correctness of SIG, KEM and SE.

Theorem 1 (Security of AKEstate
3msg with Replay Attacks and State Reveals). For any

adversary A against AKEstate
3msg with replay attacks and state reveals, there exist an MU-

EUF-CMAcorr adversary BSIG against SIG, an ε-MU-SIM adversary BKEM against KEM
and an IND-mRPA adversary BSE against SE such that

Advreplay, state
AKEstate

3msg,µ,`
(A) ≤ Advmu-sim

KEM,Encap∗,µ`(BKEM) + 2 · Advmu-corr
SIG,µ (BSIG)

+ 2µ · Advmrpa
SE,µ(BSE) + 2µ` · ε+ 2(µ`)2 · 2−γ + µ`2 · 2−λ ,

where γ is the diversity parameter of KEM and λ is the length of the nonce N in bits.
Furthermore, T(A) ≈ T(BKEM), T(A) ≈ T(BSIG) and T(A) ≈ T(BSE).

We first give a proof sketch, then present the formal proof of Theorem 1.
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AKE.Setup
ppSIG ←$ SIG.Setup
ppKEM ←$ KEM.Setup
Return ppAKE := (ppSIG, ppKEM)

AKE.Gen(ppAKE, Pi)
(vki, sski) ←$ SIG.Gen(ppSIG)
si ←$ KSE

Return (vki, (sski, si ))
AKE.Protocol(Pi 
 Pj)

Pi(resi) Pj(resj)
resi = (sski, si, ppAKE,PKList = {vku}u∈[µ]) resj = (sskj , sj , ppAKE,PKList = {vku}u∈[µ])

Ψj := ∅; kj := ∅; stj := ∅
N ←$ {0, 1}λ

Ψi := ∅; ki := ∅; sti := ∅
(p̂k, ŝk) ←$ KEM.Gen(ppKEM)
σ1 ←$ Sign(sski, (Pi, Pj , p̂k,N))
sti ←$ E(si, ŝk)

If Ψj 6= ∅ : Return ⊥
If Ver(vki, (Pi, Pj , p̂k,N), σ1) 6= 1 :

Ψj := reject
Else:

(c,K) ←$ Encap(p̂k)
σ2 ←$ Sign(sskj , (Pi, Pj , p̂k, σ1, c,N))
kj := K; Ψj := accept

Return (Ψj , kj)
If Ψi 6= ∅ : Return ⊥
If Ver(vkj , (Pi, Pj , p̂k, σ1, c,N), σ2) 6= 1 :

Ψj := reject
Else:

ŝk ← D(si, sti)
K ← Decap(ŝk, c)
ki := K; Ψi := accept

Return (Ψi, ki)

N

(p̂k, σ1)

(c, σ2)

sti

Figure 6: Generic construction of AKE2msg (without red and gray parts), AKE3msg
(with red and without gray parts) and AKEstate

3msg (with red and gray parts) from KEM,
SIG and SE. Note that the state of Pj only consists of public parts and is therefore
omitted here.

Proof Sketch. The signatures in the protocol ensure that the adversary can only
forward messages for those sessions that it wants to test. Thus the experiment can
control all ephemeral public keys p̂k and ciphertexts c that are used for test queries.
Due to the nonce, the adversary can also not replay a message containing a particular
p̂k. Thus, each p̂k is used in at most one test query.

A party will close a session when it accepts or rejects the session. Thus, the adversary
can submit at most one ciphertext c′ which is different from the ciphertext used in the
test query. Using a session key reveal query, the adversary will only see at most one
more key decapsulated with ŝk.

To deal with state reveals, the adversary A can additionally obtain the state which
is the encrypted ŝk. The reduction must know ŝk in order to answer those queries. The
simulatability property of KEM ensures that Encap and Encap∗ are indistinguishable,
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even given ŝk. So, we first switch from Encap to Encap∗. Now, we want to replace the
session keys of tested sessions with random keys. Therefore, we have to do a hybrid
argument over all users. In the η-th hybrid, we replace the test session keys for party
Pη. We can show that this is unnoticeable using that the key K∗ generated by Encap∗
is statistically close to uniform even if the adversary gets to see another key for a
ciphertext of its choice. We distinguish the following cases.

Case 1: The adversary corrupts Pη. For each session, the adversary can either reveal
the session state or test this session. If the adversary reveals the state, we do not
have to replace the session key. If the session is tested, the adversary does not
know the state E(sη, ŝk) and thus we can replace the session key by ε-uniformity
of Encap∗.

Case 2: The adversary does not corrupt Pη. In this case, we use that SE is IND-mRPA
secure and replace ŝk in the encrypted state with a random secret key for this
party. Then we can use ε-uniformity to replace all tested keys for that party with
random keys, as the state does not contain any information about ŝk. After that,
we have to switch back the state encryption to encrypt the real secret key ŝk,
getting ready for the next hybrid.

After these changes, the Test oracle will always output a random key, independent of
the bit b.

Overall, the proof loses a factor of 2µ only in the IND-mRPA security of the sym-
metric encryption scheme. All other parts are tight.

Proof of Theorem 1. For the proof, we will first define two further variables Sentsi
and Recvsi for an oracle πsi . The set Sentsi will store outgoing messages of the oracle and
the set Recvsi will store incoming messages, respectively. We stress that Recvsi will only
store valid messages, e.g., the signature needs to be valid.

Message Consistency. For our 3-move protocol given in Figure 6, we say that an
oracle πsi is message-consistent with another oracle πtj , denoted by MsgCon(πsi ← πtj),
if Pidsi := j and Pidtj := i and either

(1) πsi has sent the first message, the same nonce N is contained in Sentsi and Recvtj
and the same ephemeral key p̂k is contained in Recvsi and Senttj , or

(2) πsi has received the first message, the same nonce N and ciphertext c are contained
in Recvsi and Senttj and the same ephemeral key p̂k is contained in Sentsi and
Recvtj .

We write MsgCon(πsi ↔ πtj) if MsgCon(πsi ← πtj) and MsgCon(πtj ← πsi ).

To prove the theorem, we now consider the sequence of games G0-G5. In the following,
we describe the games and show that adjacent games are indistinguishable. Let Wini
denote the probability that Gi returns 1.
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Game G0: G0 is the original experiment Expreplay, state
AKE,µ,`,A . In addition to the original game,

we add the sets Sentsi and Recvsi which is only a conceptual change. We have

Pr[Expreplay, state
AKEstate

3msg,µ,`,A
⇒ 1] = Pr[Win0] .

Game G1: In G1, we define the event Repeat which happens if a nonce repeats for any
two oracles of the same party. If Repeat happens, the game aborts (see also Figure 7).
Due to the difference lemma,

|Pr[Win0]− Pr[Win1]| ≤ Pr[Repeat] .

Using the birthday paradox and union bound over the number of parties, we have
Pr[Repeat] ≤ µ`2 · 2−λ , where λ is the length of the nonce in bits.

Game G2: In G2, we define the event NoMsgCon which happens if there exists some
(i, s) such that πsi accepts, the intended partner j := Pidsi is uncorrupted when πsi
accepts, and there does not exist t ∈ [`] such that πsi is message-consistent with πtj . If
event NoMsgCon happens, the game will abort (see also Figure 7). Due to the difference
lemma,

|Pr[Win1]− Pr[Win2]| ≤ Pr[NoMsgCon] .

We will prove the following lemma.

Lemma 1. There exists an adversary BSIG against SIG such that

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] ≤ Pr[NoMsgCon] ≤ Advmu-corr
SIG,µ (BSIG).

Proof. If there exists an oracle πtj such that πsi is message-consistent with πtj , then due to
correctness of KEM, πsi is also partnered to πtj . It follows that Pr∃(i,s)[(1)∧ (2)∧ (3.1)] ≤
Pr[NoMsgCon].

To prove that Pr[NoMsgCon] ≤ Advmu-corr
SIG,µ (BSIG), we construct adversary BSIG against

MU-EUF-CMAcorr security of SIG. BSIG inputs the public parameter ppSIG and a list of
verification keys {vki}i∈[µ] and has access to a signing oracle OSign(·, ·) and a corrupt
oracle OCorr(·). BSIG then runs ppKEM ←$ KEM.Setup and sets ppAKE := (ppSIG, ppKEM)
and PKList := {vki}i∈[µ]. It chooses symmetric keys si for each user i ∈ [µ], initializes
all variables and then runs A on ppAKE and PKList. If A queries OAKE, BSIG responds
as follows.
– Send(i, s, j,msg = N): In order to get σ1, BSIG queries its signing oracle OSign(i, (Pi,
Pj , p̂k,N)).

– Send(i, s, j,msg = (p̂k, σ1)): In order to get σ2, BSIG queries its signing oracle
OSign(i, (Pj , Pi, p̂k, σ1, c,N)).

– Corrupt(i): BSIG queries its own oracle OCorr(i) and receives the signing key sski.
It returns (sski, si) to A.

– Queries Send(i, s, j,>), Send(i, s, j, (c, σ2)), RegisterCorrupt, StateReveal, Session-
KeyReveal and Test can be simulated as in the original experiment Expreplay, state

AKE,µ,`,A .
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During the simulation, BSIG checks if NoMsgCon happens. If this is the case, there exists
an oracle πsi such that πsi has accepted and j := Pidsi is uncorrupted at that point in
time.

Now we show that then there is a valid message-signature pair (m∗, σ∗) in Sentsi and
Recvsi such that Ver(vkj ,m∗, σ∗) = 1 and m∗ is different from any message m signed
by πtj for all t ∈ [`]. Since πsi is accepted, Sentsi 6= ∅ and Recvsi 6= ∅.
Case 1: πsi sent the first message. Let Sentsi = {N, (c, σ2)} and Recvsi = {(p̂k, σ1)}.

We have Ver(vkj , (Pj , Pi, p̂k,N), σ1) = 1, since Recvsi 6= ∅. For any oracle πtj
with Recvtj = {N ′, ·} and Senttj = {(p̂k′, σ′1)} 6= ∅, NoMsgCon implies that
(p̂k,N) 6= (p̂k′, N ′). In this case, BSIG sets (m∗, σ∗) := ((Pj , Pi, p̂k,N), σ1).

Case 2: πsi received the first message. Let Recvsi = {N, (c, σ2)} and Sentsi = {(p̂k, σ1)}.
We have Ver(vkj , (Pi, Pj , p̂k, σ1, c,N), σ2) = 1, since (c, σ2) ∈ Recvsi . For any oracle
πtj with Recvtj = {(p̂k′, σ′1)} 6= ∅ and Senttj = {N ′, (c′, σ′2)} 6= ∅, NoMsgCon im-
plies that (p̂k, c,N) 6= (p̂k′, c′, N ′). In this case, BSIG sets (m∗, σ∗) := ((Pi, Pj , p̂k,
σ1, c,N), σ2).

As soon as event NoMsgCon happens, BSIG retrieves the message-signature (m∗, σ∗) pair
as just described and outputs (j,m∗, σ∗). As Pj is uncorrupted, BSIG has not queried
OCorr(j) and m∗ is different from all signing queries for j, which concludes the proof
of Lemma 1. �

Before moving to G3, let us bound (1) ∧ (2) ∧ (3.2) and (1) ∧ (2) ∧ (3.3).

Multiple Partners. Event (1) ∧ (2) ∧ (3.2) happens if there exists any oracle πsi that
has accepted with Aflagsi = false and has more than one partner oracle. We can show
that

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] ≤ (µ`)2 · 2−γ .

The session key only depends on the ephemeral public key p̂k and the ciphertext c. In
the following, we assume that there are two oracles πtj and πt

′

j′ such that πsi is partnered
to both πtj and πt

′

j′ . We distinguish two cases:
Case 1: πsi sent the first message. Let p̂k and p̂k′ be the public keys determined

by the internal randomness of πtj and πt
′

j′ , respectively. Let r be the internal
randomness of πsi which is used by Encap. The original keys are derived from
(c,K) ← Encap(p̂k; r) and (c′,K ′) ← Encap(p̂k′; r). As πsi is partnered to both
oracles, ksi = K = K ′. Due to γ-diversity of KEM, this will happen only with
probability at most 2−γ .

Case 2: πsi received the first message. Let p̂k be the ephemeral public key determined
by the internal randomness of πsi . Let (c,K) ← Encap(p̂k; r) and (c′,K ′) ←
Encap(p̂k; r′), where r, r′ is the internal randomness of πtj and πt

′

j′ , respectively. As
πsi is partnered to both oracles, this implies that ksi = Decap(ŝk, c) = Decap(ŝk, c′).
By the correctness and γ-diversity of KEM, we have ksi = K = K ′ which will
happen with probability at most 2−γ .
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As there are µ` oracles, we can upper bound the probability for event (1) ∧ (2) ∧ (3.2)
by (µ`)2 · 2−γ .

Replay Attacks. Event (1) ∧ (2) ∧ (3.3) covers replay attacks and happens if there
exists any oracle πsi that has accepted with Aflagsi = false, is partnered to an oracle πtj ,
and there exists another oracle πs′i′ such that this oracle is also partnered to πtj . We will
show

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.3)] ≤ Pr[Repeat] + Pr[NoMsgCon] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)]

≤ Advmu-corr
SIG,µ (BSIG) + (µ`)2 · 2−γ + µ`2 · 2−λ .

We bound (1)∧ (2)∧ (3.3) by using previous observations. Assume that NoMsgCon and
(1)∧ (2)∧ (3.2) do not occur. Then for each oracle πsi there exists a unique oracle πtj such
that πsi is partnered to and message-consistent with πtj . Now assume there exists another
oracle πs′i′ that is also partnered to and message-consistent with πtj . Message-consistency
implies that i = i′. Now let s 6= s′.
Case 1: πsi sent the first message. Then, the three sets Recvsi , Recvs

′

i′ , Senttj all contain
the same ephemeral public key p̂k and no other oracle than πtj has output p̂k.
Let Sentsi = {N, (c, σ2)}, then Sents

′

i′ = {N, (c′, σ′2)} shares the same nonce N .
However, this will only happen if Repeat happens.

Case 2: πsi received the first message. Then, the three sets Sentsi , Sents
′

i′ , Recvtj all
contain the same ephemeral public key p̂k and the sets Recvsi , Recvs

′

i′ , Senttj contain
the same nonce N and ciphertext c. This means that πtj is partnered to both πsi
and πs′i′ and thus contradicts to the fact that each oracle has a unique partner.

At this point note that

Pr[WinAuth] = Pr
∃(i,s)

[(1) ∧ (2) ∧ ((3.1) ∨ (3.2) ∨ (3.3))]

≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.3)]

≤ 2 · Advmu-corr
SIG,µ (BSIG) + 2(µ`)2 · 2−γ + µ`2 · 2−λ .

The analysis of WinAuth will be helpful for the next game hop. The following games
G3-G5 are also given in Figure 7.

Game G3: In G3, we check the partnership Partner(πsi ← πtj) by message-consistency
MsgCon(πsi ← πtj) if Ψs

i = accept and Aflagsi = false. We claim that

|Pr[Win2]− Pr[Win3]| ≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] ≤ (µ`)2 · 2−γ .

Recall that if NoMsgCon does not happen, we know that each oracle πsi that has ac-
cepted with Aflagsi = false is partnered to and message-consistent with an oracle πtj . If
any such oracle πsi has a unique partner, then G2 is identical to G3. On the other hand,
the probability that there exists an oracle πsi that has accepted with Aflagsi = false
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and has multiple partners is Pr∃(i,s)[(1) ∧ (2) ∧ (3.2)], which is bounded by (µ`)2 · 2−γ .
Thus, the claims follows by the difference lemma.

Game G4: In G4, we use the Encap∗ algorithm (instead of Encap) whenever A issues a
Send query (i, s, j,msg) with a second protocol message msg = (p̂k, σ1) and the intended
partner Pj is not corrupted. We construct adversary BKEM against indistinguishability
of Encap and Encap∗.
BKEM inputs the public parameter ppKEM and {pkn, skn, cn,Kn}n∈[µ`], where (cn,Kn)

are either computed by Encap(pkn) or by Encap∗(skn). BKEM generates the public
parameter for SIG and signature key pairs (vki, sski) for i ∈ [µ], as well as symmetric
keys si. It sets PKList := {vki}i∈[µ], initializes all variables, chooses b ←$ {0, 1} and
runs A. If A makes a query to OAKE, BKEM simulates the response as follows:

– Send(i, s, j,msg = N): BKEM uses the key pair with index (i− 1)µ+ s as ephemeral
key pair, i.e. (p̂k, ŝk) := (pk(i−1)µ+s, sk(i−1)µ+s).

– Send(i, s, j,msg = (p̂k, σ1)): If Pj is uncorrupted, then due to the fact that event
NoMsgCon does not happen, there exists a unique oracle πtj such that p̂k was output
by πtj . Furthermore, n = (j − 1)µ + t is the index of that public key. Then BKEM
uses (cn,Kn) as ciphertext and key. If Pj is corrupted, BKEM runs Encap(p̂k) itself
to compute (c,K).

– Queries Send(i, s, j,>), Send(i, s, j, (c, σ2)), Corrupt, RegisterCorrupt, StateReveal,
Test and SessionKeyReveal can be simulated as in G3 and G4, except for the partner-
ship check Partner(πsi ↔ πtj). Recall that BKEM needs to compute Partner(πsi ← πtj)
in Send(i, s, j,msg) to set FirstAcc, in Test(i, s) and StateReveal(i, s) to detect
TA7, and compute Partner(πsi ↔ πtj) in Test(i, s) and SessionKeyReveal(i, s) to
detect TA4 and TA5.
• For the set of FirstAcc in Send(i, s, j,msg) and for the detection of TA7 in

Test(i, s) and StateReveal(i, s), BKEM simulates Partner(πsi ← πtj) with MsgCon
(πsi ← πtj). This simulation is perfect since Partner(πsi ← πtj) is involved only
when Aflagsi = false.
• For the detection of TA4 and TA5 in Test(i, s) and SessionKeyReveal(i, s),
BKEM simulates Partner(πsi ↔ πtj) as follows. BKEM first checks Partner(πsi ← πtj)
with MsgCon(πsi ← πtj). (Again, since Partner(πsi ↔ πtj) is involved only when
Aflagsi = false, Partner(πsi ← πtj) = MsgCon(πsi ← πtj).) If Partner(πsi ← πtj) = 0,
BKEM outputs 0 directly for Partner(πsi ↔ πtj). Otherwise, πsi is partner to and
message-consistent with πtj , hence ksi must be equal to the original key between
πsi and πtj , so BKEM can further check Partner(πsi → πtj) by simply testing whether
ktj = ksi . This simulation is perfect as well.

Finally, A outputs b∗. If b = b∗, BKEM outputs 1. Otherwise, it outputs 0.
We want to elaborate in more detail on why a tuple (pkn, skn, cn,Kn) is used

at most once. As NoMsgCon does not happen, there exists a partner for each oracle
that has accepted when the intended partner was not corrupted. Thus, for each query
Send(i, s, j, (p̂k, σ1)), where Pj is uncorrupted, there exists a partner oracle πtj that has
sent (p̂k, ·). Finally, as Repeat does not happen, A cannot replay (p̂k, σ1) to another
oracle πs′i because σ1 includes the identities and the nonce N .
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G3, G4 G4,η,0, G4,η,1 , G4,η,2 , G5 :

ppSIG ←$ SIG.Setup
ppKEM ←$ KEM.Setup
For i ∈ [µ]:

(vki, sski) ←$ SIG.Gen(ppSIG);
si ←$ KSE
crpi := false

PKList := {vki}i∈[µ]; b ←$ {0, 1}
For (i, s) ∈ [µ]× [`]:

varsi := (stsi ,Pidsi , ksi ,Ψs
i ) := (∅, ∅, ∅, ∅)

(Sentsi ,Recvsi ) := (∅,∅)
Aflagsi := false; FirstAccsi := ∅
T si := false; kRevsi := false; stRevsi := false

Repeat := false; NoMsgCon := false
b∗ ← AOAKE(·)(ppAKE,PKList)

// During the execution the game checks if one of the following
// flags is set to true and if so, it aborts immediately:

Repeat := true, If ∃i, s, s′ ∈ [µ]× [`]2, N ∈ {0, 1}λ s.t.
N ∈ Sentsi ∧N ∈ Sents

′
i

NoMsgCon := true, If ∃i, s ∈ [µ]× [`] s.t. (1′) ∧ (2′) ∧ (3′).
Let j := Pidsi .
(1′) Ψs

i = accept
(2′) Aflagsi = false
(3′) @t ∈ [`] s.t. πsi is message-consistent with πtj

WinInd := false
If b∗ = b: WinInd = true; Return 1
Else: Return 0

OAKE(query):
If query=Test(i, s):

If Ψs
i 6= accept ∨ Aflagsi = true ∨ kRevsi = true ∨ T si = true:
Return ⊥

If FirstAccsi = false:
If crpi = true ∧ stRevsi = true: Return ⊥

Let j := Pidsi
If ∃t ∈ [`] s.t. Partner(πsi ↔ πtj) :

If kRevtj = true ∨ T tj = true: Return ⊥
If ∃t ∈ [`] s.t. Partner(πsi ← πtj) :

If FirstAcctj = false ∧ crpj = true ∧ stRevtj = true:
Return ⊥

T si := true
k0 := ksi

If FirstAccsi = false:

k0 :=
{
k ←$ K if i < η

ksi if i ≥ η
If FirstAccsi = true:

Let πtj be the partner of πsi

k0 :=
{
k ←$ K if j < η

ksi if j ≥ η

If FirstAccsi = false:

k0 :=
{
k ←$ K if i ≤ η
ksi if i > η

If FirstAccsi = true:
Let πtj be the partner of πsi

k0 :=
{
k ←$ K if j ≤ η
ksi if j > η

k0 ←$ K
k1 ←$ K; Return kb

OAKE(query):
If query=Send(i, s, j,msg):

If Ψs
i = accept: Return ⊥

If msg = >: �session is initiated
Pidsi := j; N ←$ {0, 1}λ
msg′ := N

If msg = N : �first message
Pidsi := j
(p̂k, ŝk) ←$ KEM.Gen
σ1 ←$ Sign(sski, (Pi, Pj , p̂k,N))
stsi ←$ E(si, ŝk)
If i = η:

sksi := ŝk
r ←$ ŜK; stsi ←$ E(si, r)

msg′ := (p̂k, σ1)
If msg = (p̂k, σ1): �second message

Choose N ∈ Sentsi
If Pidsi 6= j or Ver(vkj , (Pj , Pi, p̂k,N), σ1) 6= 1:

Ψs
i := reject; Return ⊥

(c,K) ←$ Encap(p̂k)
If crpj = false:

Then ∃ unique t s.t. p̂k output by πtj
Choose the corresponding ŝk
(c,K) ←$ Encap∗(ŝk)

σ2 ←$ Sign(sski, (Pj , Pi, p̂k, σ1, c,N))
ksi := K; Ψs

i := accept
msg′ := (c, σ2)

If msg = (c, σ2): �third message
Choose N ∈ Recvsi and (p̂k, σ1) ∈ Sentsi
If Pidsi 6= j or Ver(vkj , (Pi, Pj , p̂k, σ1, c,N), σ2) 6= 1:

Ψs
i := reject; Return ⊥

ŝk ← D(si, stsi )
If i = η: ŝk := sksi
K ← Decap(ŝk, c)
stsi := ∅; ksi := K; Ψs

i := accept
msg′ := ∅

Recvsi := Recvsi ∪ {msg}; Sentsi := Sentsi ∪ {msg′}
If Ψs

i = accept:
If crpj = true: Aflagsi := true
If crpj = false: ∃t ∈ [`] s.t. Partner(πsi ← πtj):

If Ψt
j 6= accept:
FirstAccsi := true; FirstAcctj := false

If Ψt
j = accept:
FirstAccsi := false; FirstAcctj := true

Return msg′

Partner(πsi ← πtj)
If Ψs

i = accept ∧ Aflagsi = false: �message-consistency check
Return MsgCon(πsi ← πtj)

Else: �original partnership check
If πsi sent the first message
and ksi = K(πsi , πtj) 6= ∅: Return 1

If πsi received the first message
and ksi = K(πtj , πsi ) 6= ∅: Return 1

Return 0

Figure 7: Games G3-G5 for the proof of Theorem 1. Queries to OAKE where query∈
{Corrupt,RegisterCorrupt, SessionKeyReveal,StateReveal} are defined as in the original
game in Figure 5.
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If BKEM’s input (cn,Kn) is computed using the original Encap algorithm, then BKEM
perfectly simulates G3. Otherwise, if (cn,Kn) is computed using the Encap∗ algorithm,
then BKEM perfectly simulates G4. Hence,

|Pr[Win3]− Pr[Win4]| ≤ Advmu-sim
KEM,Encap∗,µ`(BKEM) .

Game G4,η,0, η ∈ {1, ..., µ+ 1}: From G4,1,0 to G4,µ+1,0, we will use hybrid arguments
to replace the test keys k0 with random keys for all oracles πsi . Here, we have to take
into account whether the oracle sent the first message or whether it received the first
message. We will consider one user after another and in each step, we will replace the
session key in test queries where that user’s oracle has received the first message. At
the same time, we replace the session keys in test queries where that user’s oracle is a
partner oracle that has received the first message. In particular, in game G4,η,0, when A
queries Test(i, s), instead of setting k0 to the real session key ksi , we choose a random
key if
(1) πsi has received the first message and i < η, or
(2) πsi has sent the first message, πtj is the partner oracle and j < η.

Clearly, G4,1,0 is identical to G4 and G4,µ+1,0 is identical to G5.

Lemma 2. Let Encap∗ be the additional algorithm associated to a KEM and let the key
encapsulated by Encap∗ be ε-uniform. Then for η ∈ {1, ..., µ},

|Pr[Win4,η,0]− Pr[Win4,η+1,0]| ≤ 2 · Advmrpa
SE,` (BSE) + 2` · ε .

Proof. We will consider two cases: (1) The adversary corrupts Pη and (2) the adversary
does not corrupt Pη. We have

|Pr[Win4,η,0]− Pr[Win4,η+1,0]| ≤ |Pr[Win4,η,0 ∧ crpη]− Pr[Win4,η+1,0 ∧ crpη]|
+ |Pr[Win4,η,0 ∧ ¬crpη]− Pr[Win4,η+1,0 ∧ ¬crpη]| .

First, we consider the case that Pη is corrupted. Let πsη be any oracle of Pη. If A does not
issue a test query on any πsη directly or where πsη is the partner, then Pr[Win4,η,0∧crpη] =
Pr[Win4,η+1,0 ∧ crpη].

Otherwise, we have to consider the following two cases.
Case 1: A asks Test(i, s) for i = η and πsη received the first message (FirstAccsη =

false). We know that the partner oracle πtj received the ephemeral public key p̂k
output by πsη and has sent a ciphertext c computed by Encap∗. Then, as Pη is
corrupted and A queries Test(η, s), A is disallowed to ask StateReveal(η, s) (TA6).
So the information of the ephemeral secret key ŝk leaked to A is limited in p̂k.
By the ε-uniformity of Encap∗, we can replace the corresponding session key in
Test(η, s) with a random key. Note that in this case, the πtj is message-consistent
with πsη (i.e., Partner(πsη ↔ πtj)) and A can neither test nor reveal the key of πtj
(TA4, TA5).

Case 2: A asks Test(i, s), where πsi sent the first message (FirstAccsi = true) and is
partnered to πtη. We know that the ephemeral public key p̂k received by πsi was
sent by πtη as Pη has to be uncorrupted when πsi accepts. The ciphertext c sent
by πsi was computed by Encap∗. As we consider that Pη is corrupted later and A
queries Test(i, s), A is disallowed to ask StateReveal(η, t) (TA7).
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However, Pi may be corrupted and A can create a new ciphertext c′ 6= c, sent it to
πtη. In this case πtη is not message-consistent with πsi . If A reveals the session key
of πtη, it will get Decap(ŝk, c′). Overall, the information of the ephemeral secret
key ŝk leaked to A is limited in p̂k and Decap(ŝk, c′). By ε-uniformity of Encap∗,
we can still replace the session key of πsi with a random key.

As one party has at most ` sessions, union bound yields

|Pr[Win4,η,0 ∧ crpη]− Pr[Win4,η+1,0 ∧ crpη]| ≤ ` · ε .

Now we will look at the case that Pη is not corrupted and we introduce two further
intermediate games G4,η,1 and G4,η,2.

Game G4,η,1, η ∈ {1, ..., µ}: On a query Send(i, s, j,N), where i = η, we do not encrypt
the ephemeral secret key ŝk in the state, but a random secret key r ←$ ŜK. We store
the real secret key in an additional variable sksη such that we can later access it for
decapsulation. The rest remains unchanged.

We now construct an IND-mRPA adversary BSE,η against the symmetric encryp-
tion scheme SE with message space ŜK. BSE,η inputs ` message-ciphertext pairs
{(ŝkn, cn)}n∈[`] for ` random messages ŝkn ←$ ŜK, where cn is either an encryption of
ŝkn or that of a random message rn ←$ ŜK. BSE,η generates the public parameter and
signature key pairs (vki, sski) for i ∈ [µ]. For all i 6= η, it also generates symmetric keys
si. It sets PKList := {vki}i∈[µ], initializes all variables, chooses b←$ {0, 1} and then
runs A. If A queries OAKE, BSE,η responds as follows:
– Send(i, s, j,msg = N): If i = η, BSE,η computes p̂k := KEM.PK(ŝks) from the s-th

message. It sets sksη := ŝks and the state variable stsη := cs.
– Send(i, s, j,msg = (c, σ2)): If i = η, BSE,η chooses ŝk from sksη instead of decrypting
the state.

– Corrupt(i): If i = η, BSE,η aborts.
– Queries Send(i, s, j,>), Send(i, s, j, (p̂k, σ1)), RegisterCorrupt, StateReveal, Session-

KeyReveal and Test can be simulated as in G4,η,0.
Finally, A outputs b∗. If b = b∗ and BSE,η does not abort, BSE,η outputs 1. Otherwise,
it outputs 0. If the input ciphertexts are encryptions of the messages ŝk1, ..., ŝk` and
BSE,η does not abort, it perfectly simulates G4,η,0 ∧ ¬crpη. If the input ciphertexts
are encryptions of random messages and BSE,η does not abort, it perfectly simulates
G4,η,1 ∧ ¬crpη. Thus,

|Pr[Win4,η,0 ∧ ¬crpη]− Pr[Win4,η,1 ∧ ¬crpη]| ≤ Advmrpa
SE,` (BSE,η) .

Game G4,η,2, η ∈ {1, ..., µ}: In game G4,η,2, we switch all session keys output by Test
where oracle πsη received the first message to random. Also, we switch all session keys
output by Test where oracle πsη is the partner that has sent the first message to random.
In particular, when A queries Test(i, s), instead of setting k0 to the real session key ksi ,
we choose a random key if
(1) πsi has received the first message and i ≤ η, or
(2) πsi has sent the first message, πtj is the partner oracle and j ≤ η.
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Similar to the case where Pη is corrupted, we will argue that the difference between the
two games is bounded by the ε-uniformity of Encap∗. Again, we consider the two cases
where we deviate from the previous game.
Case 1: A asks Test(i, s) for i = η and πsη received the first message (FirstAccsη =

false). We know that the partner oracle πtj received the ephemeral public key
p̂k output by πsη and has sent a ciphertext c computed by Encap∗. A may query
StateReveal(η, s), but will receive only an encryption of a random secret key. So
the information of the ephemeral secret key ŝk leaked to A is limited in p̂k. If
A queries Test(η, s), A can neither test nor reveal the key of πtj as πtj is also
partnered to πsη. Due to ε-uniformity of Encap∗, we can replace the session key of
πsη with a random key.

Case 2: A asks Test(i, s), where πsi sent the first message (FirstAccsi = true) and is
partnered to πtη. We know that the ephemeral public key p̂k received by πsi was
sent by the partner oracle πtη as Pη is uncorrupted. The ciphertext c sent by πsi
was computed by Encap∗. A may reveal the state of πtη, but will receive only an
encryption of a random secret key. A may corrupt Pi, create a new ciphertext
c′ 6= c and sent it to πtη. In this case, if πtη is not message-consistent with πsi , A can
reveal the session key of πtη and receives Decap(ŝk, c′). Overall, the information of
the ephemeral secret key ŝk leaked to A is limited in p̂k and Decap(ŝk, c′). Thus,
we can still replace the session key of πsi with a random key due to ε-uniformity
of Encap∗.

As there are at most ` test sessions for one party, we have

|Pr[Win4,η,1 ∧ ¬crpη]− Pr[Win4,η,2 ∧ ¬crpη]| ≤ ` · ε .

Now, we can switch back the encryption of a random ephemeral secret key to the real
ephemeral key. Note that this is G4,η+1,0. We can construct an IND-mRPA adversary
B′SE,η against SE such that

|Pr[Win4,η,2 ∧ ¬crpη]− Pr[Win4,η+1,0 ∧ ¬crpη]| ≤ Advmrpa
SE,` (B′SE,η) ,

where B′SE,η deviates from BSE,η only in the simulation of the Test oracle as introduced
in game G4,η,2.

Lemma 2 now follows from collecting the probabilities and folding adversaries BSE,η
and B′SE,η into a single adversary BSE. �

Game G5: Finally, game G5 is identical to G4,µ+1,0. In this game, the Test oracle always
outputs a random key, independent of the bit b. Hence,

Pr[Win5] = 1
2 ,

which concludes the proof of Theorem 1. �

Theorem 2 (Security of AKE3msg with Replay Attacks and without State Reveals). For
any adversary A against AKE3msg with replay attacks and without state reveals, there
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exist an MU-EUF-CMAcorr adversary BSIG against SIG and an MUSC-otCCA adversary
BKEM against KEM such that

Advreplay
AKE3msg,µ,`

(A) ≤ 2 · Advmusc-otcca
KEM,µ` (BKEM) + 2 · Advmu-corr

SIG,µ (BSIG)

+ 2(µ`)2 · 2−γ + µ`2 · 2−λ ,

where γ is the diversity parameter of KEM and λ is the length of the nonce N in bits.
Furthermore, T(A) ≈ T(BKEM) and T(A) ≈ T(BSIG).

We first give a proof sketch, then present the formal proof of Theorem 2.

Proof Sketch. This proof is very similar to the proof of Theorem 1. The signatures
and nonce in the protocol ensure that the adversary can only forward messages for test
sessions and cannot replay a particular ephemeral public key p̂k.

As we do not consider state reveals, the reduction does not have to know the corre-
sponding secret key ŝk. Instead, we can use a weaker security notion for KEM, which
allows for one challenge query and one decapsulation query for each p̂k. Also, there is no
need for a hybrid argument and we can output a random key for sessions which will be
tested as well as for sessions that will be revealed, using MUSC-otCCA security of KEM.

Proof of Theorem 2. The proof is very similar to that of Theorem 1. We consider
a sequence of games G0-G3, which are the same as in the proof of Theorem 1, only
that we start with G0 as the Expreplay

AKE3msg,µ,`,A experiment. Note that the game changes
from G0-G3 in Theorem 1 do not involve state reveals. Thus by a similar analysis, we
establish

|Pr[Expreplay
AKE3msg,µ,`,A ⇒ 1]− Pr[Win3]| ≤ Advmu-corr

SIG,µ (BSIG) + (µ`)2 · 2−γ + µ`2 · 2−λ ,

and

Pr[WinAuth] ≤ 2 · Advmu-corr
SIG,µ (BSIG) + 2(µ`)2 · 2−γ + µ`2 · 2−λ .

Recall that in G3, the game defines partnering using message-consistency for all oracles
πsi that have accepted with Aflagsi = false. In order to bound Pr[Win3], we construct an
adversary BKEM against MUSC-otCCA security of KEM (see Figure 8). We will show
that ∣∣Pr[Win3]− 1

2
∣∣ ≤ 2 · Advmusc-otcca

KEM,µ` (BKEM) .
The idea is that we do not only replace the session key of an oracle when it is tested,
but we replace the session keys of all oracles that are possibly tested. In particular,
these are sessions where the intended partner is uncorrupted when the oracle accepts.
These oracles can then either be tested or revealed. However, as we do not consider
state reveals, the adversary will never see the ephemeral secret key and thus we can
also output a random key for a SessionKeyReveal query.

Let β be the random bit of BKEM’s challenger. BKEM inputs the public parameter
ppKEM and {pkn}n∈[µ`]. BKEM generates the public parameter for SIG and signature
key pairs (vki, sski) for i ∈ [µ] and sets PKList := {vki}i∈[µ]. It initializes all variables,
chooses a random challenge bit b ←$ {0, 1} and runs A. If A makes a query to OAKE,
BKEM simulates the response as follows:
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– Send(i, s, j,msg = N): BKEM uses the public key with index (i−1)µ+s as ephemeral
public key, i.e. p̂k := pk(i−1)µ+s.

– Send(i, s, j,msg = (p̂k, σ1)): If Pj is uncorrupted, then due to the fact that NoMsgCon
does not happen, there exists a unique oracle πtj such that p̂k was output by πtj .
Furthermore, n = (j − 1)µ+ t is the index of that public key. Then BKEM queries
OβEncap(n), receives a ciphertext and key (c,Kβ) and sets ksi := Kβ . If Pj is corrupted,
BKEM runs Encap(p̂k) itself to compute (c,K). It also computes a signature σ2 as
the protocol specifies and outputs (c, σ2).

– Send(i, s, j,msg = (c, σ2)): Let n = (i−1)µ+s. Then, πsi sent p̂kn. If there exists an
oracle πtj that has received p̂kn and has sent c, then BKEM sets ksi := ktj . Otherwise,
BKEM queries ODecap(n, c), receives K and sets ksi := K.

– Test(i, s): After ruling out trivial attacks TA1, TA2 and TA3, BKEM checks for
trivial attacks TA4 and TA5 using message-consistency check MsgCon(πsi ← πtj)
and tests if ktj = ksi . If it does not output ⊥, BKEM sets k0 = ksi and k1 ←$ K and
outputs kb.

– SessionKeyReveal(i, s): After ruling out trivial attack TA2, BKEM checks for trivial
attack TA4 by checking if there exists an oracle πtj such that πtj is tested and
MsgCon(πtj ← πsi ). If further ktj = ksi , BKEM returns ⊥. Otherwise, it outputs ksi .

– Queries Send(i, s, j,>), Corrupt and RegisterCorrupt can be simulated as in G3.

Finally, A outputs b∗ and BKEM outputs β∗ := 0 if b∗ = b and β∗ := 1 otherwise.

As events NoMsgCon and Repeat do not happen, BKEM queries OβEncap only once for
each p̂k, equivalently to the proof of Theorem 1. Also, ODecap is queried at most once,
as each ephemeral public key is only output by one oracle which accepts the session key
after calling ODecap. In the following, we will argue that BKEM perfectly simulates G3 if
β = 0, and that A’s view is independent of b if β = 1.

Case β = 0: For each query to O0
Encap, BKEM receives the real key. When A queries

Test(i, s), BKEM needs to check partnering to avoid TA4 and TA5. We know that
Aflagsi = false because otherwise BKEM would have returned ⊥. Thus, BKEM checks
MsgCon(πsi ← πtj) as in G3, but instead of checking Partner(πtj ← πsi ), it checks
whether ktj = ksi . As β = 0, ksi is the real session key and original key between πsi
and πtj . Thus, Partner(πtj ← πsi ) can be efficiently checked by testing if ktj = ksi .
BKEM simulates Test queries as in G3. When A queries SessionKeyReveal(i, s),
BKEM also needs to check partnering to avoid TA4. Therefore, for each oracle
πtj that is tested and thus Aflagtj = false, BKEM checks if πtj is partnered to πsi
by MsgCon(πtj ← πsi ) as in G3. Instead of checking Partner(πsi ← πjt ), it checks
whether ktj = ksi . We know that ktj is the real session key, thus BKEM simulates
SessionKeyReveal queries as in G3. Consequently, BKEM simulates G3 perfectly for
A in this case, and Pr[β∗ = β | β = 0] = Pr[Win3].

Case β = 1: For each query to O1
Encap, BKEM receives a random key. When A queries

Test(i, s), BKEM checks MsgCon(πsi ← πtj) and if ktj = ksi . As β = 1, k0 = ksi and
k1 are both random keys. Thus, BKEM’s output is independent of b. When A
queries SessionKeyReveal(i, s), BKEM checks for each oracle πtj that is tested and
thus Aflagtj = false, if πtj is partnered to πsi by MsgCon(πtj ← πsi ). If ktj 6= ksi ,
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BO
β
Encap(·),ODecap(·,·)

KEM (ppKEM, pk1, ..., pkµ`) :
ppSIG ←$ SIG.Setup
For i ∈ [µ]:

(vki, sski) ←$ SIG.Gen(ppSIG);
crpi := false

PKList := {vki}i∈[µ]; b ←$ {0, 1}
For (i, s) ∈ [µ]× [`]:

varsi := (Pidsi , ksi ,Ψs
i ) := (∅, ∅, ∅)

(Sentsi ,Recvsi ) := (∅,∅)
Aflagsi := false; T si := false; kRevsi := false

Repeat := false; NoMsgCon := false
b∗ ← AOAKE(·)(ppAKE,PKList)
If b∗ = b: Return β∗ := 0
Else: Return β∗ := 1

// During the execution BKEM checks if one of the following
// flags is set to true and if so, it aborts immediately:

Repeat := true, If ∃i, s, s′ ∈ [µ]× [`]2, N ∈ {0, 1}λ s.t.
N ∈ Sentsi ∧N ∈ Sents

′
i

NoMsgCon := true, If ∃i, s ∈ [µ]× [`] s.t. (1′) ∧ (2′) ∧ (3′).
Let j := Pidsi .
(1′) Ψs

i = accept
(2′) Aflagsi = false
(3′) @t ∈ [`] s.t. MsgCon(πsi ← πtj)

OAKE(query):
If query=Test(i, s):

If Ψs
i 6= accept ∨ Aflagsi = true ∨ kRevsi = true
∨ T si = true:

Return ⊥
Let j := Pidsi
If ∃t ∈ [`] s.t. MsgCon(πsi ← πtj) ∧ ktj = ksi :

If kRevtj = true ∨ T tj = true: Return ⊥
T si := true
k0 := ksi ; k1 ←$ K
Return kb

If query=SessionKeyReveal(i, s):
If Ψs

i 6= accept: Return ⊥
If T si = true: Return ⊥
Let j := Pidsi
If ∃t ∈ [`] s.t. T tj = true:

If MsgCon(πtj ← πsi ) ∧ ktj = ksi : Return ⊥
kRevsi := true; Return ksi

OAKE(query):
If query=Send(i, s, j,msg):

If Ψs
i = accept: Return ⊥

If msg = >: �session is initiated
Pidsi := j

N ←$ {0, 1}λ
msg′ := N

If msg = N : �first message
Pidsi := j
Let n := (i− 1)µ+ s; p̂k := pkn
σ1 ←$ Sign(sski, (Pi, Pj , p̂k,N))
msg′ := (p̂k, σ1)

If msg = (p̂k, σ1): �second message
Choose N ∈ Sentsi
If Pidsi 6= j or Ver(vkj , (Pj , Pi, p̂k,N), σ1) 6= 1:

Ψs
i := reject; Return ⊥

If crpj = false:
Then ∃ unique t s.t. p̂k output by πtj
Let n := (j − 1)µ+ t

(c,Kβ)← OβEncap(n); ksi := Kβ

Else:
(c,K) ←$ Encap(p̂k); ksi := K

σ2 ←$ Sign(sski, (Pj , Pi, p̂k, σ1, c,N))
Ψs
i := accept

msg′ := (c, σ2)
If msg = (c, σ2): �third message

Choose N ∈ Recvsi and (p̂k, σ1) ∈ Sentsi
If Pid 6= j or Ver(vkj , (Pi, Pj , p̂k, σ1, c,N), σ2) 6= 1:

Ψs
i := reject; Return ⊥

Let n := (i− 1)µ+ s and j := Pidsi
If ∃t s. t. Recvtj = {(p̂k, ·)} ∧ Senttj = {N, (c, ·)}:

ksi := ktj
Else:

K ← ODecap(n, c); ksi := K
Ψs
i := accept

msg′ := ∅
Recvsi := Recvsi ∪ {msg}; Sentsi := Sentsi ∪ {msg′}
If Ψs

i = accept:
If crpj = true: Aflagsi := true

Return msg′

Figure 8: Adversary BKEM against MUSC-otCCA security of KEM for the proof of
Theorem 2. Queries to OAKE where query∈ {Corrupt,RegisterCorrupt} are defined as in
the original game Expreplay

AKE3msg,µ,`,A in Figure 5.
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BKEM outputs ksi . As ktj is a random key, A learns nothing about the bit b. We
have Pr[b∗ = b] = 1

2 in this case and further Pr[β∗ = β | β = 1] = 1
2 .

It follows that

Advmusc-otcca
KEM,µ` (BKEM) =

∣∣Pr[β∗ = β]− 1
2
∣∣

=
∣∣ 1

2 · Pr[β∗ = β | β = 0] + 1
2 · Pr[β∗ = β | β = 1]− 1

2
∣∣

=
∣∣ 1

2 · Pr[Win3] + 1
2 ·

1
2 −

1
2
∣∣ = 1

2
∣∣Pr[Win3]− 1

2
∣∣ .

Collecting the probabilities yields the bound in Theorem 2. �

Theorem 3 (Security of AKE2msg without State Reveals and Replay Attacks). For
any adversary A against AKE2msg without state reveals and replay attacks, there exist
an MU-EUF-CMAcorr adversary BSIG against SIG and an MUC-otCCA adversary BKEM
against KEM such that

AdvAKE2msg,µ,`(A) ≤ 2 · Advmuc-otcca
KEM,µ` (BKEM) + Advmu-corr

SIG,µ (BSIG) + (µ`)2 · 2−γ ,

where γ is the diversity parameter of KEM. Furthermore, T(A) ≈ T(BKEM) and T(A) ≈
T(BSIG).

Proof Sketch. In the two-message protocol, the signatures ensure that the adversary
can only forward messages for test sessions. However, the adversary may also replay a
message containing a particular ephemeral public key p̂k in another session. Thus, we
require multi-challenge security of the KEM. We still only need one decapsulation query
as the session is closed after it receives the last message and has accepted or rejected
the session key.

As we do not consider state reveals and the adversary will not see any ephemeral
secret key ŝk, we can follow the strategy of the proof of Theorem 2. Thus, we do not
only replace the session keys of test sessions, but also of those that will be revealed,
using MUC-otCCA security of KEM. The full proof is given in Appendix A.

6 Signatures with Tight Adaptive Corruptions
6.1 Pairing Groups and MDDH Assumptions

Let GGen be a pairing group generation algorithm that returns a description PG :=
(G1,G2,GT , q, P1,P2, e) of asymmetric pairing groups where G1, G2, GT are cyclic
groups of order q for a λ-bit prime q, P1 and P2 are generators of G1 and G2, respectively,
and e : G1 × G2 is an efficient computable (non-degenerated) bilinear map. PT :=
e(P1,P2) is a generator in GT . In this paper, we only consider Type III pairings, where
G1 6= G2 and there is no efficient homomorphism between them. All constructions in
this paper can be easily instantiated with Type I pairings by setting G1 = G2 and
defining the dimension k to be greater than 1.

We use the implicit representation of group elements as in [EHK+13]. For s ∈
{1, 2, T} and a ∈ Zq define [a]s = aPs ∈ Gs as the implicit representation of a
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in Gs. Similarly, for a matrix A = (aij) ∈ Zn×mq we define [A]s as the implicit
representation of A in Gs. Span(A) := {Ar | r ∈ Zmq } ⊂ Znq denotes the linear span
of A, and similarly Span([A]s) := {[Ar]s | r ∈ Zmq } ⊂ Gns . Note that it is efficient
to compute [AB]s given ([A]s,B) or (A, [B]s) with matching dimensions. We define
[A]1 ◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed given [A]1 and
[B]2.

We recall the definition of the Matrix Decisional Diffie-Hellman (MDDH) and related
assumptions from [EHK+13].

Definition 16 (Matrix distribution). Let k, ` ∈ N with ` > k. We call D`,k a matrix
distribution if it outputs matrices in Z`×kq of full rank k in polynomial time. Let Dk :=
Dk+1,k.

For positive integers k, η, n ∈ N+ and a matrix A ∈ Z(k+η)×n
q , we denote the k

rows of A by A ∈ Zk×nq and the lower η rows of A by A ∈ Zη×nq . Without loss of
generality, we assume A for A←$ D`,k form an invertible square matrix in Zk×kq . The
D`,k-MDDH problem is to distinguish the two distributions ([A], [Aw]) and ([A], [u])
where A ←$ D`,k, w ←$ Zkq and u ←$ Z`q.

Definition 17 (D`,k-MDDH assumption). Let D`,k be a matrix distribution and s ∈
{1, 2, T}. We say that the D`,k-MDDH assumption holds relative to GGen in group Gs
if for all adversaries A, it holds that

AdvMDDH
GGen,D`,k,Gs(A) := |Pr[A(PG, [A]s, [Aw]s)⇒ 1]− Pr[A(PG, [A]s, [u]s)⇒ 1]|

is negligible where the probability is taken over PG ←$ GGen(1λ), A←$ D`,k,w ←$ Zkq
and u ←$ Z`q.

Definition 18 (Uniform distribution). Let k, ` ∈ N+ with ` > k. We call U`,k a uniform
distribution if it outputs uniformly random matrices in Z`×kq of rank k in polynomial
time. Let Uk := Uk+1,k.

Lemma 3 (D`,k-MDDH ⇒ Uk-MDDH [EHK+13]). Let `, k ∈ N+ with ` > k and let
D`,k be a matrix distribution. A Uk-MDDH instance is at least as hard as an D`,k
instance. More precisely, for each adversary A there exists an adversary B with

AdvMDDH
GGen,Uk,Gs(A) ≤ AdvMDDH

GGen,D`,k,Gs(B)

and T(A) ≈ T(B).

The Kernel-Diffie-Hellman assumption (Dk-KMDH) [MRV16] is a (weaker) compu-
tational analogue of the Dk-MDDH Assumption.

Definition 19 (Dk-KMDH). Let Dk be a matrix distribution. We say that the Dk-
Kernel Diffie-Hellman (Dk-KMDH) assumption holds relative to a prime order group
Gs for s ∈ {1, 2} if for all PPT adversaries A,

AdvKMDH
GGen,Dk,Gs(A) : = Pr[c>A = 0 ∧ c 6= 0 | [c]3−s ←$ A(PG, [A]s)],

where the probabilities are taken over PG ←$ GGen(1λ) and A←$ Dk.
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6.2 Previous Schemes with Tight Adaptive Corruptions

We will construct a signature scheme with tight MU-EUF-CMAcorr security and only
small constant number of elements in signatures. Such a scheme has been proposed
in [BHJ+15, Section 2.3] (called SIGC), but we identify a gap in their proof. We now
present the gap in their security proof and why we think it will be hard to close it.

The construction of SIGC follows the BKP IBE schemes [BKP14], namely, it tightly
transforms an affine MAC [BKP14] into a signature in the multi-user setting. In order to
have a tightly MU-EUF-CMAcorr secure signature scheme, the underlying MAC needs
to be tightly secure against adaptive corruption of its secret keys in the multi-user
setting. We will now point to potential problems in formally proving it.

We abstract the underlying MAC of SIGC as MACBHJKL: For message space {0, 1}`, it
chooses A′ ←$ Dk and random vectors xi,j ←$ Zkq (for 1 ≤ i ≤ ` and j = 0, 1). Then it
defines B := A′ ∈ Zk×kq and publishes parameters pp := ([B]1, ([B>xi,j ]1)1≤i≤`,j=0,1).
For each user n, it chooses its MAC secret key as [x′n]1 ←$ G1, and its MAC tag consist
of ([t]1, [u]1), where

t = Bs ∈ Zkq for s ←$ Zkq
u = x′n + t>

∑
i
xi,mi︸ ︷︷ ︸

=:x(m)

∈ Zq. (3)

In their security proof, they argue that [u]1 in the MAC tagging queries is pseudo-
random, given pp and some of the secret keys [x′n]1 (via the adaptive corruption queries)
to an adversary.6 In achieving this, they define a sequence of hybrids Hj for 1 ≤ j ≤ `.
In each Hj , they replace x′n for each user n with RFn,j(m|j), where RFn,j : {0, 1}j → Zq
is a random function and m is the first tagging query to user n, and generate the MAC
tag of m′ as

u = RFn,j(m′|j) + t>x(m′) (4)

with t as in Equation (3).
In their final step (between H` and Game 4), they argue that the distribution of

u = RFn,`(m′) + t>x(m′) is uniformly random (as in Game 4) even for an unbounded
adversary, given pp and adaptive corruptions. Then they conclude that H` (where
u = RFn,`(m′) + t>x(m′)) and Game 4 (where u is chosen uniformly at random) are
identical and Pr[χ4] = Pr[H` = 1] (according to their notation). However, this is not
the case: B ∈ Zk×kq is full-rank and thus, given [B>xi,j ]1 in pp, xi,j ∈ Zkq is uniquely
defined. (For concreteness, imagine a simple example where an (unbounded) adversary
A only queries one MAC tag for message m for user n and then asks for the secret
key [x′n]1 := RFn,`(m) of user n. Then, A sees that u = RFn,`(m) + t>x(m) is uniquely
defined by [x′n]1, [t]1 and pp in H`, while u is uniformly at random in Game 4.) We
suppose this gap is inherent, since the terms B>xi,j completely leak the information
about xi,j . This is also the same reason why the BKP MAC cannot be used to construct
a tightly secure hierarchical IBE (HIBE) (cf. [LP19] for more discussion).

6 This is different to the BKP IBE where [B>xi,j ]1 and [x′n]1 are not available to an adversary.
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To resolve this, we follow the tightly secure HIBE approach in [LP19] and choose
B←$ Z3k×k

q . Now, there is a non-zero kernel matrix B⊥ ∈ Z3k×2k
q for B (with over-

whelming probability), and the mapping xi,j ∈ Z3k
q 7→ B>xi,j ∈ Zkq is lossy. In

particular, the information about xi,j in the orthogonal space of B is perfectly hidden
from (unbounded) adversaries, given B>xi,j .

6.3 Our Construction

Let H : {0, 1}∗ → {0, 1}λ be a function chosen from a collision-resistant hash function
family H. Our signature scheme SIGMDDH := (SIG.Setup,SIG.Gen,Sign,Ver) is defined
in Figure 9. Correctness can be verified as

SIG.Setup:
PG ←$ GGen
A ←$ Dk; B ←$ U3k,k
For 1 ≤ i ≤ λ and j = 0, 1:

xi,j ←$ Z3k
q ; Yi,j ←$ Z3k×k

q

Zi,j := (Yi,j ‖ xi,j) ·A ∈ Z3k×k
q

Pi,j := B> · (Yi,j ‖ xi,j) ∈ Zk×(k+1)
q

pp := (PG, [A]2, [B]1, ([Zi,j ]2, [Pi,j ]1)1≤i≤λ,j=0,1)
Return pp

SIG.Gen(pp)
x′ ←$ Zq; y′ ←$ Z1×k

q

ssk := ([x′]1, [y′]1)
vk := [z′]2 := [(y′ ‖ x′)A]2 ∈ G1×k

2
Return (vk, ssk)

Sign(ssk,m):
s ←$ Zkq ; t := Bs ∈ Z3k

q

hm := H(vk,m)
u := x′ + s>B>x(hm) ∈ Zq
v := y′ + s>B>Y(hm) ∈ Z1×k

q

Return σ := ([t]1, [u]1, [v]1)

Ver(vk,m, σ := ([t]1, [u]1, [v]1)):
hm := H(vk,m)
If [v, u]1 ◦ [A]2 = [1]1 ◦ [z′]2 + [t>]1 ◦ [Z(hm)]2:

Return 1
Else: Return 0

Figure 9: Our signature scheme with tight adaptive corruptions, where for hm ∈ {0, 1}λ
we define the functions x(hm) :=

∑λ
i=1 xi,hmi , Y(hm) :=

∑λ
i=1 Yi,hmi , Z(hm) :=∑λ

i=1 Zi,hmi , and P(hm) :=
∑λ
i=1 Pi,hmi .

[v, u]1 ◦ [A]2 = [(y′, x′) ·A + t> · (Y(hm) | x(hm)) ·A]T

for ([t]1, [u]1, [v]1)←$ Sign(ssk,m).

Theorem 4 (Security of SIGMDDH). For any adversary A against the
MU-EUF-CMAcorr security of SIGMDDH, there are adversaries B against the collision
resistance of H, B1 against the U3k,k-MDDH assumption over G1 and B2 against the
Dk-KMDH assumption over G2 with

Pr[Expmu-corr
SIG,µ,A ⇒ 1] ≤Advcr

H(B) + (8kλ+ 2k)AdvMDDH
GGen,U3k,k,G1

(B1)

+ AdvKMDH
GGen,Dk,G2

(B2) + 4λ+ 2k + 2
q − 1 ,

where T(B) ≈ T(A) ≈ T(B1) ≈ T(B2).
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G0, G1, G2 :

PG ←$ GGen; A ←$ Dk; B ←$ U3k,k
For 1 ≤ i ≤ λ and j = 0, 1:

xi,j ←$ Z3k
q ; Yi,j ←$ Z3k×k

q

Zi,j := (Yi,j ‖ xi,j) ·A ∈ Z3k×k
q

Pi,j := B> · (Yi,j ‖ xi,j) ∈ Zk×(k+1)
q

Zi,j ←$ Z3k×k
q

di,j := B>xi,j ∈ Zkq
Ei,j := (B>Zi,j − di,j ·A)A−1 ∈ Zk×kq

Pi,j := (Ei,j ‖ di,j)
pp := (PG, [A]2, [B]1, ([Zi,j ]2, [Pi,j ]1)1≤i≤λ,j=0,1)
For 1 ≤ i ≤ µ:
x′i ←$ Zq; y′i ←$ Z1×k

q

z′i := (y′i ‖ x′i)A ∈ Z1×k
q

z′i ←$ Z1×k
q ; y′i = (z′i − x′i ·A)(A)−1

sski := ([x′i]1, [y′i]1)
vki := [z′i]2

(i∗,m∗, σ∗) ←$ AOSign(·,·),OCorr(·)(pp, {vki}1≤i≤µ)
If (i∗ ∈ Scorr) ∨ (m∗ ∈Mi∗) ∨ (Ver(vki∗ ,m∗, σ∗) = 0):

Return 0
hm∗ := H(vki∗ ,m∗)
If ∃1 ≤ i ≤ µ ∧m ∈Mi : H(vki,m) = hm∗

Return 0
Parse σ∗ := ([t∗]1, [u∗]1, [v∗]1)
If [u∗]1 6= [x′i∗ ]1 + [t∗]>1 · x(hm∗)

Return 0
Return 1

OSign(i,m):
s ←$ Zkq ; t := Bs ∈ Z3k

q

hm := H(vki,m)
u := x′i + s>B>x(hm) ∈ Zq
v := y′i + s>B>Y(hm) ∈ Z1×k

q

v := (z′i + t>Z(hm)− u ·A) · (A)−1

Mi :=Mi ∪ {m}
Return σ := ([t]1, [u]1, [v]1)

OCorr(i):
Scorr := Scorr ∪ {i}
Return sski

Figure 10: Games used to prove Theorem 4.

Proof. We prove the tight MU-EUF-CMAcorr security of SIGMDDH with a sequence of
games given in Figure 10. Let A be an adversary against the MU-EUF-CMAcorr security
of SIGMDDH, and let Wini denote the probability that Gi returns 1.
Game G0: G0 is the original experiment Expmu-corr

SIG,µ,A (cf. Definition 3). In addition to
the original game, we add a rejection rule if there is a collision between the forgery
and a signing query, namely, H(vki∗ ,m∗) = H(vki,m) where (i,m) is one of the signing
queries. By the collision resistance of H, we have

|Pr[Expmu-corr
SIG,µ,A ⇒ 1]− Pr[Win0]| ≤ Advcr

H(B).

For better readability, we assume all the signing queries are distinct for the fol-
lowing games. If the same (i,m) is asked multiple times, we can take the first re-
sponse ([t]1, [u]1, [v]1) and answer the repeated queries with the re-randomization
([t′]1, [u′]1, [v′]1) as t′ := t + Bs′ (for s′ ←$ Zkq ), u′ := u + s′>(B>x(hm)) and v′ :=
v + s′>(B>x(hm)) and hm := H(vki,m). Note that this will not change the view of A.
Game G1: For verifying the forgery, in addition to using Ver, we use the secret [x′i∗ ]1
and ([xj,b]1)1≤j≤λ to check if ([t∗]1, [u∗]1) in the forgery satisfies the following equation:

[u∗]1 = [x′i∗ ]1 + [t∗]>1 · x(hm∗). (5)
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We note that

Ver(vki∗ ,m∗, σ∗) = 1
⇔(v ‖ u) ·A = (y′i∗ ‖ x′i∗)A + t∗> · (Y(hm) ‖ x(hm)) ·A.

Thus, if Equation (5) does not hold, then the vector [(v ‖ u)]1 − ([y′i∗ ‖ x′i∗ ]1 + [t∗>]1 ·
x(hm∗)) ∈ G1×(k+1)

1 is non-zero and orthogonal to [A]2. Therefore, we bound the
difference between G0 and G1 with the Dk-KMDH assumption as

|Pr[Win0]− Pr[Win1]| ≤ AdvKMDH
GGen,Dk,G2

(B).

Game G2: We do not use the values Yj,b (for 1 ≤ j ≤ λ and b = 0, 1) and y′i (for
1 ≤ i ≤ µ) to simulate G2. We make this change by substituting all Yj,b and y′i using
the formulas

Y>j,b = (Zj,b − xj,b ·A)(A)−1 and y′i = (z′i − x′i ·A)(A)−1, (6)

respectively. More precisely, the public parameters pp are computed by picking Zj,b and
xj,b at random and then defining Yj,b using Equation (6). The verification keys vki for
user i (1 ≤ i ≤ µ) are computed by picking z′i and x′i at random. For OSign(i,m), we
now compute

v := y′i + t>Y(hm) ∈ Z1×k
q

= (z′i − x′i ·A)(A)−1 + t>(Z(hm)− x(hm) ·A)(A)−1

= (z′i + t>Z(hm)− (x′i + t>x(hm))︸ ︷︷ ︸
=u

·A)(A)−1.

The secret verification of the forgery can be done by knowing x′i∗ and xj,b.
The changes in G2 are only conceptual, since Equations (6) are equivalent to

Zj,b = (Yj,b ‖ xj,b)A and z′i = (y′i ‖ x′i)A. Thus, we have

Pr[Win1] = Pr[Win2].

In order to bound Pr[Win2], consider a “message authentication code” MAC which
is defined as follows.

• The public parameters consist of ppMAC := (PG, [B]1, ([di,j ]1)1≤i≤λ,j=0,1), where
di,j := B>xi,j ∈ Zkq for xi,j ←$ Z3k

q and B←$ U3k,k.
• The secret key is [x′]1.
• The MAC tag on hm is ([t]1, [u]1), where t := Bs and u := x′ + t>x(hm), for

s ←$ Zkq .
Note that strictly speaking MAC is not a MAC since verification cannot only be done
efficiently by knowing the values xi,j .

The following lemma states MU-EUF-CMAcorr security of MAC.
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UF-CMAcorr
A :

β = 0
PG ←$ GGen
B ←$ U3k,k
For 1 ≤ i ≤ λ and j = 0, 1:

xi,j ←$ Z3k
q

ppMAC := (PG, [B]1, ([B>xi,j ]1)1≤i≤λ,j=0,1)
For 1 ≤ i ≤ µ:
x′i ←$ Zq

AOMac(·),OVer(·,·),O′Corr(·)(ppMAC)
Return β

OMac(i, hm):
Q := Q∪ {(i, hm)}
s ←$ Zkq ; t := Bs ∈ Z3k

q

u := x′i + t>x(hm) ∈ Zq
Return σ := ([t]1, [u]1)

OVer(i∗, hm∗, ([t∗]1, [u∗]1)): �at most once
If (i∗, hm∗) ∈ Q ∨ (i∗ ∈ L):

Return 0
If [u∗]1 := [x′i∗ ]1 + [t∗>]1 · x(hm∗):
β := 1
Return 1

Else: Return 0

O′Corr(i)
L := L ∪ {i}
Return [x′i]1

Figure 11: Game UF-CMAcorr for Lemma 4.

Lemma 4 (Core Lemma). For every adversaries A interacting with UF-CMAcorr, there
exists an adversary B against the U3k,k-MDDH assumption in G1 with

Pr[UF-CMAcorr
A ⇒ 1] ≤ (8kλ+ 2k) · AdvMDDH

GGen,U3k,k,G1
(B1) + 4λ+ 2k + 2

q − 1 ,

and T(B) ≈ T(A), where Qe is the number of A’s queries to OMac.

The proof is postponed to Appendix B.
Finally, we bound the probability that the adversary wins in G2 using our Core

Lemma (Lemma 4) by constructing an adversary BMAC as in Figure 12.

Pr[Win2] = Pr[UF-CMAcorr
BMAC

⇒ 1].

In order to analyze Pr[Win2] we argue as follows. The simulated pp and (vki)1≤i≤µ are
distributed as in G2. Further, queries to OSign and OCorr from sski can be perfectly
simulated using OMac and O′Corr, respectively. The additional group elements [v]1 from
σ and [y′i]1 can be simulated as in G2. Finally, using a valid forgery (i∗,m∗, σ∗) output
by A, BMAC wins its own game by calling OVer(i∗, hm∗, ([t∗]1, [u∗]1), where ([t∗]1, [u∗]1)
is a valid MAC tag on hm∗ for user i∗. �
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BOMac(·),OVer(·),O′Corr(·)
MAC (ppMAC):

Parse ppMAC =: (PG, [B]1, ([di,j ]1)1≤iλ,j=0,1)
A ←$ Dk
For 1 ≤ i ≤ λ and j = 0, 1:

Zi,j ←$ Z3k×k
q

Ei,j := (B>Zi,j − di,j ·A)A−1 ∈ Zk×kq

Pi,j := (Ei,j ‖ di,j)
pp := (PG, [A]2, [B]1, ([Zi,j ]2, [Pi,j ]1)1≤i≤λ,j=0,1)
For 1 ≤ i ≤ µ:

z′i ←$ Z1×k
q

vki := [z′i]2 �sski is undefined
(i∗,m∗, σ∗) ←$ AOSign(·,·),OCorr(·)(pp, {vki}1≤i≤µ)
If (i∗ ∈ Scorr) ∨ (m∗ ∈Mi∗) ∨ (Ver(vki∗ ,m∗, σ∗) = 0):

Return 0
hm∗ := H(vki∗ ,m∗)
If ∃1 ≤ i ≤ µ ∧m ∈Mi : H(vki,m) = hm∗

Return 0
Parse σ∗ := ([t∗]1, [u∗]1, [v∗]1)
OVer(i∗, hm∗, [t∗]1, [u∗]1)
Return 1

OSign(i,m):
hm := H(vki,m)
([t]1, [u]1) ←$ OMac(hm)
v := (z′i + t>Z(hm)− u ·A) · (A)−1

Mi :=Mi ∪ {m}
Return σ := ([t]1, [u]1, [v]1)

OCorr(i):
Scorr := Scorr ∪ {i}
[x′i]1 ← O′Corr(i)
y′i = (z′i − x′i ·A)(A)−1

Return sski := ([x′i]1, [y′i]1)

Figure 12: Reduction BMAC to bound the winning probability in G2. BMAC receives
ppMAC and gets oracle access to OMac and OVer, and O′Corr as in Figure 11.

7 Concrete Instantiation of Our AKE Protocols
In this section, we present concrete instantiation of our AKE protocols. We first provide
a generic construction of ε-MU-SIM KEM from Universal2 Hash Proof System (HPS)
in Subsection 7.2, then give an instantiation of HPS from MDDH (and a function H)
in Subsection 7.3. This yields concrete ε-MU-SIM KEM schemes based on the MDDH
assumptions.

For AKE3msg, we use our new signature scheme SIGMDDH (Figure 9) and the ε-MU-SIM
KEM constructed from the MDDH-based hash proof system. For AKEstate

3msg, the sym-
metric encryption scheme to protect against state reveals can be instantiated using any
weakly secure (deterministic) encryption scheme such as AES or even a weak PRF (cf.
Remark 1).

In practice, we can consider the function H used in the HPS instantiation in
Subsection 7.3 as a collision-resistant hash function and thus choose parameter t = 1
(see Remark 7 and Remark 8). Then, the resulting KEM public key consists of 2k group
elements and the ciphertext of k + 1 group elements. A signature consists of 4k + 1
group elements, cf. Figure 9. Therefore, the first message is a bitstring of length λ,
the second message consists of 6k + 1 group elements and the third message consists
of 5k + 2 group elements. For k = 1, we get an efficient SXDH-based scheme with 15
elements in total.

We instantiate protocol AKE2msg using our signature scheme from Figure 9 and the
MUC-otCCA secure KEM from Han et al. [HLLG19]. γ-diversity of the KEM is proven
in [LLGW20, Appendix D.2]. We analyze the communication complexity of AKE2msg as
follows. The KEM public key consists of k2 + 3k group elements and the ciphertext of
2k+ 3 group elements. A signature consists of 4k+ 1 group elements. Therefore, the first
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message consists of k2 + 7k+ 1 group elements and the second message consists of 6k+ 4
group elements. For k = 1, we get an efficient SXDH-based scheme with 9 + 10 = 19
group elements in total.

For an overview we refer to Table 1 of the introduction.

7.1 Definitions of HPS

We give the formal definition of Hash Proof System (HPS) according to [CS02].

Definition 20 (HPS). A hash proof system HPS = (HPS.Setup, Pub,Priv) consists of
a tuple of PPT algorithms:

– pp←$ HPS.Setup: The setup algorithm outputs a public parameter pp, which
implicitly defines (L,X ,SK,PK,Π,Λ(·), α), where L ⊆ X is an NP-language with
universe X , SK is the hashing key space, PK is the projection key space, Π is
the hash value space, Λ(·) : X −→ Π is a family of efficiently computable hash
functions indexed by a hashing key sk ∈ SK, and α : SK −→ PK is an efficiently
computable projection function.

We assume that there are PPT algorithms for sampling x←$ L uniformly
together with a witness w, sampling x ←$ X \ L uniformly, sampling x ←$ X
uniformly, and sampling sk ←$ SK uniformly. We require pp to be an implicit
input of other algorithms.

– π ← Pub(pk, x, w): The deterministic public evaluation algorithm outputs the hash
value π = Λsk(x) ∈ Π of x ∈ L, with help of a projection key pk = α(sk) and a
witness w for x ∈ L.

– π ← Priv(sk, x): The deterministic private evaluation algorithm outputs the hash
value π = Λsk(x) ∈ Π of x ∈ X with help of the hashing key sk.

We require that for all pp ∈ HPS.Setup, all hashing keys sk ∈ SK with the corresponding
projection key pk := α(sk), all x ∈ L with all possible witnesses w, it holds that
Pub(pk, x, w) = Λsk(x) = Priv(sk, x).

HPS is associated with a subset membership problem (SMP). Any SMP can be
extended to multi-fold SMP with a security loss of the number of folds.

Definition 21 (SMP). Let A be an adversary against the subset membership problem
(SMP) of HPS. The advantage of A is defined as

Advsmp
HPS(A) := |Pr [A(pp, x) = 1]− Pr [A(pp, x′) = 1] | ,

where pp←$ HPS.Setup, x ←$ L, and x′ ←$ X \ L.

Definition 22 (Multi-fold SMP). Let A be an adversary against the multi-fold subset
membership problem (SMP) of HPS. The advantage of A is defined as

Advmsmp
HPS,µ(A) :=

∣∣Pr
[
A(pp, {xj }j∈[µ]) = 1

]
− Pr

[
A(pp, {x′j }j∈[µ]) = 1

]∣∣
where pp←$ HPS.Setup, x1, · · · , xµ ←$ L and x′1, · · · , x′µ ←$ X \ L.
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For some random-self reducible problems like MDDH, the hardness of multi-fold SMP
can be tightly reduced to that of SMP, i.e., Advmsmp

HPS,µ(A) ≈ Advsmp
HPS(B). See Section 6.1

for more details. Our instantiations of HPS from MDDH is shown in Section 7.3.
Definition 23 (ε-Universal2 of HPS). A hash proof system HPS is ε-universal2, if for
all pp ∈ HPS.Setup, for all pk ∈ PK, all x, x∗ ∈ X with x∗ /∈ L∪{x}, and all π, π∗ ∈ Π,
it holds that

Pr[Λsk(x∗) = π∗ | α(sk) = pk,Λsk(x) = π] ≤ ε,
where the probability is over sk ←$ SK. If ε = 1/|Π|, then HPS is perfectly universal2.

Below we define an extracting notion, which is adapted from [DKPW12].
Definition 24 (γ-Extracting of HPS). A hash proof system HPS is γ-extracting, if it
is γ-extracting1 and γ-extracting2.
(1) γ-Extracting1: For all pp ∈ HPS.Setup, all x ∈ L and all π ∈ Π, it holds that

Pr
sk ←$ SK

[Λsk(x) = π] ≤ 2−γ ;

(2) γ-Extracting2: For all pp ∈ HPS.Setup, all x, x∗ ∈ L with x∗ 6= x, and all
π, π∗ ∈ Π, it holds that Pr

sk ←$ SK
[Λsk(x∗) = π∗ | Λsk(x) = π] ≤ 2−γ .

If γ = log |Π|, then HPS is perfectly extracting.

7.2 ε-MU-SIM Secure KEM from Universal2-HPS

Let HPS = (HPS.Setup,Pub,Priv) be a universal2-HPS associated with a hard multi-fold
subset membership problem (SMP) and enjoying an extracting property. We present
a simple construction KEMHPS = (KEM.Setup, KEM.Gen,Encap,Decap,Encap∗) from
HPS as follows.

• KEM.Setup: pp←$ HPS.Setup, where pp = (L,X ,SK,PK,Π,Λ(·), α). Return
ppKEM := pp. Here the encapsulation key space K := Π, the ciphertext space
CT := X and the public key & secret key spaces are PK × SK.

• KEM.Gen(ppKEM): Choose sk ←$ SK and return (pk := α(sk), sk).
• Encap(pk): Sample x←$ L with witness w and return (c := x,K := Pub(pk, x,
w) = Λsk(x)).

• Decap(sk, c): Compute and return K ′ := Priv(sk, c).
• Encap∗(sk): Sample x ←$ X \ L and return (c := x,K := Priv(sk, x) = Λsk(x)).

The correctness of KEMHPS follows from the correctness of HPS. Now we prove the
strong ε-MU-SIM security of KEMHPS.
Lemma 5 (ε-MU-SIM Security of KEMHPS). Let ε′ be a real number and Π the hash
value space of HPS. If HPS is an ε′-universal2 HPS associated with a hard multi-fold
SMP, then KEMHPS is ε-MU-SIM secure with uniformity parameter ε = |Π|2 ·(ε′−1/|Π|).

Concretely, for any polynomial µ, any adversary A, there exists an adversary B,
such that T(B) ≈ T(A) and

Advmu-sim
KEM,Encap∗,µ(A) ≤ Advmsmp

HPS,µ(B). (7)
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Remark 5. If HPS is perfectly universal2 (i.e., ε′ = 1/|Π|), then KEMHPS has 0-uniformity
for the key encapsulated by Encap∗ (i.e, ε = 0).

Proof of Lemma 5. To prove (7), we build an adversary B solving the multi-fold
SMP by invoking A. Given a challenge (pp, {xi }i∈[µ]), B wants to determine whether
xi ←$ L or xi ←$ X \ L. B sets ppKEM := pp, samples (pki, ski) ←$ KEM.Gen(ppKEM),
and computes (ci,Ki) := (xi,Λski(xi)). Then B invokes A

(
{pki, ski, ci,Ki}i∈[µ]

)
, and

returns the output of A to its challenger. If xi ←$ L, (ci,Ki) = (xi,Λski(xi)) has the
same distribution as the output of Encap(pki); if xi ←$ X \ L, (ci,Ki) = (xi,Λski(xi))
has the same distribution as the output of Encap∗(ski). Consequently, B solves the
multi-fold SMP as long as A distinguishes Encap and Encap∗, and (7) holds.

We now proceed to prove ε-Uniformity of Encap∗ as defined in (1). Firstly, ε′-
universal2 of HPS means

Pr[Λsk(c∗) = π∗ | α(sk) = pk,Λsk(c) = π] ≤ ε′,

for all pp←$ HPS.Setup, all pk ∈ PK, all c, c∗ ∈ X with c∗ /∈ L∪{c}, and all π, π∗ ∈ Π,
where the probability is over sk ←$ SK. By an averaging argument over (c, c∗, pk),
ε′-universal2 implies that for any (unbounded) adversary B, it holds that∣∣ Pr[c←$ B(pk, c∗) : c 6= c∗ ∧ B(pk, c∗,K∗,Decap(sk, c))⇒ 1]

− Pr[c←$ B(pk, c∗) : c 6= c∗ ∧ B(pk, c∗, R,Decap(sk, c))⇒ 1]
∣∣

≤ |Π| · (ε′ − 1/|Π|),
(8)

where the probability is over ppKEM ←$ KEM.Setup, (pk, sk) ←$ KEM.Gen(ppKEM), (c∗,
K∗) ←$ Encap∗(sk), R ←$ K and the internal randomness of B. The averaging argument
essentially uses the law of total probability over (c, c∗, pk). We note that here c is not
allowed to depend on K∗ or R, but ε-Uniformity allows c arbitrarily dependent on K∗
or R. This gap can be filled by a leveraging argument, as shown below.

Suppose towards a contradiction that there exists an (unbounded) adversary A, so
that ∣∣ Pr[c←$ A(pk, c∗,K∗) : c 6= c∗ ∧ A(pk, c∗,K∗,Decap(sk, c))⇒ 1]

− Pr[c←$ A(pk, c∗, R) : c 6= c∗ ∧ A(pk, c∗, R,Decap(sk, c))⇒ 1]
∣∣ > ε.

(9)

Then we can construct an (unbounded) adversary B to contradict with (8). B is
constructed by the following leveraging argument.
• Given (pk, c∗), B samples a T ′ ←$ Π uniformly, invokes c←$ A(pk, c∗, T ′) and

outputs c.
• Then B receives (pk, c∗, T,Decap(sk, c)), where T = K∗ or T = R, and invokes
b←$ A(pk, c∗, T, Decap(sk, c)).

• If T ′ = T , B outputs the bit b output by A ; otherwise, B outputs 0.
If T ′ = T , which happens with probability 1/|Π|, B perfectly simulates the experiment
defined in (9) for A, thus B distinguishes T = K∗ from T = R as long as A does; if

215



S. Han, T. Jager, E. Kiltz, S. Liu, J. Pan, D. Riepel, S. Schäge

T ′ 6= T , B always outputs 0 no matter T = K∗ or T = R. Overall,

B’s distinguishing advantage in the experiment defined in (8)
= A’s distinguishing advantage in the experiment defined in (9) /|Π|
> ε/|Π| = |Π| · (ε′ − 1/|Π|),

which contradicts with (8). This completes the proof of ε-Uniformity. �

Moreover, we show the diversity of KEMHPS as long as HPS is extracting.

Lemma 6 (γ-Diversity of KEMHPS). Let γ′ be a real number, Π the hash value space
of HPS and L the language space. If HPS is γ′-extracting, then KEMHPS has γ-diversity
with γ = 2γ′ + log |L| − log(|Π| · |L|+ 22γ′).

Remark 6. If HPS is perfectly extracting (i.e., γ′ = log |Π|), then KEMHPS is γ-diverse
with γ = log |Π| + log |L| − log(|Π| + |L|). For our concrete instantiation HPSMDDH
shown in Section 7.3, which is perfectly extracting and has |Π| = q and |L| = qk− 1, the
resulting KEMHPSMDDH is γ-diverse with γ = log q+log(qk−1)−log(q+qk−1) ≥ log(q/3).
Proof of Lemma 6. By construction, we have

(1) Pr
[

(pk, sk)←$ KEM.Gen(ppKEM);
r, r′ ←$ R; (c,K)← Encap(pk; r); (c′,K ′)← Encap(pk; r′) : K = K ′

]
= Pr

[
sk ←$ SK;x, x′ ←$ L : Λsk(x) = Λsk(x′)

]
=

∑
a∈L

Pr
x ←$ L

[x = a] ·
∑
a′∈L

Pr
x′ ←$ L

[x′ = a′] · Pr
sk ←$ SK

[
Λsk(a) = Λsk(a′)

]
=

∑
a∈L

1
|L|
·

 ∑
a′∈L\{a}

1
|L|
·
∑
π∈Π

Pr
sk ←$ SK

[
Λsk(a) = Λsk(a′) = π

]
+ 1
|L|
· 1



=
∑
a∈L

1
|L|
·

 ∑
a′∈L\{a}

1
|L|
·
∑
π∈Π

Pr
sk ←$ SK

[
Λsk(a) = π

]
︸ ︷︷ ︸
≤ 2−γ

′
by γ′-extracting1

· Pr
sk ←$ SK

[
Λsk(a′) = π |Λsk(a) = π

]
︸ ︷︷ ︸

≤ 2−γ
′
by γ′-extracting2 of HPS

+ 1
|L|


≤ |Π| · (2−γ

′
)2 + 1/|L|,

(2) Pr
[
(pk, sk)←$ KEM.Gen(ppKEM); (pk′, sk′)←$ KEM.Gen(ppKEM);

r ←$ R; (c,K)← Encap(pk; r); (c′,K ′)← Encap(pk′; r) : K = K ′
]

= Pr
[
sk, sk′ ←$ SK;x←$ L : Λsk(x) = Λsk′(x)

]
=

∑
a∈L

Pr
x ←$ L

[x = a] ·
∑
π∈Π

Pr
[
sk, sk′ ←$ SK : Λsk(a) = Λsk′(a) = π

]
=

∑
a∈L

1
|L|
·
∑
π∈Π

Pr
sk ←$ SK

[Λsk(a) = π]︸ ︷︷ ︸
≤ 2−γ

′
by γ′-extracting1 of HPS

· Pr
sk′ ←$ SK

[Λsk′(a) = π]︸ ︷︷ ︸
≤ 2−γ

′
by γ′-extracting1 of HPS

≤ |Π| · (2−γ
′
)2.

Thus, KEMHPS has γ-diversity with γ = 2γ′ + log |L| − log(|Π| · |L|+ 22γ′). �

216



AKE and Signatures with Tight Security in the Standard Model

7.3 Universal2 Hash Proof System from MDDH

In this subsection, we construct an MDDH-based universal2 hash proof system HPSMDDH
which is also extracting. Then together with the transformation in Section 7.2, we
immediately obtain an MDDH-based ε-MU-SIM secure KEM which also enjoys γ-
diversity.

Our HPSMDDH extends the DDH-based hash proof system proposed by Cramer and
Shoup in [CS02] to MDDH assumptions. Let G = (G, q,P) be a description of cyclic
group G of prime order q and with generator P . Let Dk be a matrix distribution, t ∈ N,
and H = {H : Gk+1 → Ztq} a family of hash functions from Gk+1 to Ztq.

• HPS.Setup picks A←$ Dk, H←$ H, and outputs public parameter pp := ([A],H).
pp implicitly defines (L,X ,SK,PK,Π,Λ(·), α) as follows.
• X := Gk+1 \ {[0]} and the language L := LA := {[c] = [Aw] ∈ Gk+1 : w ∈
Zkq \ {0}} ⊆ X . The value w is a witness of [c] ∈ L.

• SK := Z(t+1)×(k+1)
q , PK := G(t+1)×k, and hash value space Π := G.

• For sk = K ∈ SK, define pk = α(sk) := [KA] ∈ PK.
• For [c] ∈ X and sk = K ∈ SK, define Λsk([c]) := (1, τ>) ·K · [c] ∈ G with

τ := H([c]) ∈ Ztq.

• Pub(pk = [KA], [c] ∈ L,w ∈ Zkq ): Compute τ := H([c]) ∈ Ztq, and return
[π] := (1, τ>) · [KA] ·w ∈ G.

• Priv(sk = K, [c] ∈ X ): Compute τ := H([c]) ∈ Ztq, and return [π] := (1, τ>) ·K ·
[c] ∈ G.

It is straightforward to check the correctness of HPSMDDH. The associated SMP is
exactly the Dk-MDDH (cf. Definition 17), and the associated multi-fold SMP is exactly
multi-fold Dk-MDDH. By the random self-reducibility of Dk-MDDH (cf. Lemma 10),
we have the following corollary.

Corollary 4 (Multi-fold SMP). For any µ ∈ N and any A there exists an adversary B
with Advmsmp

HPSMDDH,µ
(A) = Advµ-MDDH

GGen,Dk,G(A) ≤ AdvMDDH
GGen,Dk,G(B) + 1

q−1 .

Below we show the perfect universal2 and extracting properties, respectively.

Lemma 7 (Perfectly Universal2 of HPSMDDH). (1) If H = Hinj = {H : Gk+1 → Ztq}
is a family of injective functions (in this case t ≥ k + 1), then HPSMDDH is perfectly
universal2. (2) If H = Hcr = {H : Gk+1 → Ztq} is a family of collision-resistant hash
functions (in this case t = 1), then HPSMDDH is perfectly universal2 assuming that there
are no collisions.

Proof of Lemma 7. For sk = K←$ Z(t+1)×(k+1)
q , for any [c] ∈ X , any [c∗] ∈

X \ (L ∪ {[c]}), any pk ∈ PK and any [π] ∈ G, we consider the distribution of
Λsk([c∗]) = (1, τ ∗>) ·K · [c∗] conditioned on pk = α(sk) = [KA] and [π] = Λsk([c]) =
(1, τ>) ·K · [c], where τ ∗ := H([c∗]), τ := H([c]) ∈ Ztq.
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Firstly, we prove (1). Since [c∗] 6= [c] and H is injective, we have τ ∗ 6= τ . Let a⊥ ∈
Zk+1
q be an arbitrary non-zero vector in the kernel space of A such that (a⊥)>A = 0

holds. It is clear that (a⊥)> · [c∗] 6= [0] since [c∗] /∈ span([A]). Let b ∈ Zt+1
q be an

arbitrary non-zero vector such that (1, τ>) · b = 0 but (1, τ ∗>) · b = 1. We can
always find such b since (1, τ>) and (1, τ ∗>) are linearly independent (due to τ ∗ 6= τ ).
Equivalently, sk can be sampled via sk = K := K̃ + µ · b(a⊥)> ∈ Z(t+1)×(k+1)

q , where
K̃←$ Z(t+1)×(k+1)

q and µ←$ Zq. In this case, we have pk = α(sk) = [KA] = [K̃A],
[π] = Λsk([c]) = (1, τ>) ·K · [c] = (1, τ>) · K̃ · [c], which may leak K̃, but the value of
µ is completely hidden. Moreover,

Λsk([c∗]) = (1, τ ∗>) ·K · [c∗] = (1, τ ∗>) · K̃ · [c∗] + µ · (1, τ ∗>) · b︸ ︷︷ ︸
=1

· (a⊥)> · [c∗]︸ ︷︷ ︸
6=[0]

.

Thanks to the uniformity of µ, Λsk([c∗]) is uniformly distributed over G conditioned on
pk = α(sk) and [π] = Λsk([c]). This shows that HPSMDDH is perfectly universal2.

For (2), we also have τ ∗ 6= τ as long as no collision happens. Then the analysis of
perfectly universal2 is similar to (1). �

Remark 7. Instantiating HPSMDDH using Hcr is more efficient than using Hinj since t can
be as small as 1. Taking into account the collision resistance of Hcr, HPSMDDH using Hcr
is perfectly universal2 only in a computational sense, and the KEMHPSMDDH derived from
such HPSMDDH (cf. Section 7.2) has only computational ε-uniformity. Nevertheless, this
does not affect the tight security reduction from AKEstate

3msg to KEMHPSMDDH in Theorem 1
and AKE3msg to KEMHPSMDDH in Theorem 2, since we can always add an extra game (e.g.,
between G0 and G1) to deal with collisions in the security proofs. In this extra game, the
challenger aborts immediately when collision happens. Then in subsequent games, the
adversary wins only if no collision happens, and in such scenarios, HPSMDDH using Hcr
is perfect universal2 and the KEMHPSMDDH derived from HPSMDDH (cf. Section 7.2) has
ε-uniformity. On the other hand, we note that it is easy to construct hash functions Hcr
whose collision resistance can be tightly reduced to the discrete logarithm assumption
[Dam88, CvP92], so this extra game does not affect the tightness of our AKE protocols.

Lemma 8 (Perfect Extracting of HPSMDDH). HPSMDDH is perfectly extracting1. More-
over, (1) If H = Hinj = {H : Gk+1 → Ztq} is a family of injective functions (in this case
t ≥ k + 1), then HPSMDDH is perfectly extracting2. (2) If H = Hcr = {H : Gk+1 → Ztq}
is a family of collision-resistant hash functions (in this case t = 1), then HPSMDDH is
perfectly extracting2 assuming that there are no collisions.

Proof of Lemma 8. Firstly, we prove the perfect extracting1 property. For sk =
K ←$ Z(t+1)×(k+1)

q , for any [c] ∈ L = span[A] \ {[0]}, we consider the distribution of
Λsk([c]) = (1, τ>)·K·[c], where τ := H([c]) ∈ Ztq. Since [c] 6= [0] and K←$ Z(t+1)×(k+1)

q ,
it follows that K · [c] is uniformly distributed over Gt+1. Moreover, (1, τ>) is non-zero,
thus Λsk([c]) = (1, τ>) ·K · [c] is uniformly distributed over G. This shows the perfect
extracting1 of HPSMDDH.

Next, we prove the perfect extracting2 property. For sk = K←$ Z(t+1)×(k+1)
q , for

any [c] ∈ L, any [c∗] ∈ L \ {[c]}, and any [π] ∈ G, we consider the distribution of
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Λsk([c∗]) = (1, τ ∗>) ·K · [c∗] conditioned on [π] = Λsk([c]) = (1, τ>) ·K · [c], where
τ ∗ := H([c∗]), τ := H([c]) ∈ Ztq.

• For (1), since H is injective, we have τ ∗ 6= τ . Let b ∈ Zt+1
q be an arbitrary non-zero

vector such that (1, τ>)·b = 0 but (1, τ ∗>)·b = 1. We can always find such b since
(1, τ>) and (1, τ ∗>) are linearly independent (due to τ ∗ 6= τ ). Equivalently, sk can
be sampled via sk = K := K̃+b·r> ∈ Z(t+1)×(k+1)

q , where K̃←$ Z(t+1)×(k+1)
q and

r←$ Zk+1
q . In this case, we have [π] = Λsk([c]) = (1, τ>) ·K · [c] = (1, τ>) · K̃ · [c],

which may leak K̃, but the value of r is completely hidden. Moreover,

Λsk([c∗]) = (1, τ ∗>) ·K · [c∗] = (1, τ ∗>) · K̃ · [c∗] + (1, τ ∗>) · b︸ ︷︷ ︸
=1

·r> · [c∗].

Thanks to the uniformity of r and the fact that [c∗] 6= [0], r> · [c∗] is uniformly
distributed over G, and this implies that uniformity of Λsk([c∗]) conditioned on
[π] = Λsk([c]). Hence the perfectly extracting2 of HPSMDDH follows.

• For (2), we also have τ ∗ 6= τ as long as no collision happens. Then the analysis of
perfect extracting2 is similar to (1). �

Remark 8. As in Remark 7, HPSMDDH using Hcr is perfectly extracting2 only in a
computational sense, and the KEMHPSMDDH derived from such HPSMDDH (cf. Section 7.2)
has only computational diversity. Nevertheless, this does not affect the tight security
reduction from AKEstate

3msg to KEMHPSMDDH in Theorem 1 and AKE3msg to KEMHPSMDDH in
Theorem 2, since we can always add an extra game to deal with collisions in the security
proofs.
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A Proof of Theorem 3
Let us first define message-consistency for the 2-move protocol AKE2msg in Figure 6.

Message Consistency. We say that an oracle πsi is message-consistent with another
oracle πtj , denoted by MsgCon(πsi ← πtj), if Pidsi := j and Pidtj := i and either
(1) πsi has sent the first message, the same ephemeral public key p̂k is contained in

Sentsi and Recvtj and the same ciphertext c is contained in Recvsi and Senttj , or
(2) πsi has received the first message and the same ephemeral public key p̂k is contained

in Recvsi and Senttj .
We write MsgCon(πsi ↔ πtj) if MsgCon(πsi ← πtj) and MsgCon(πtj ← πsi ).

We now define a sequence of games G0-G2. Let Wini denote the probability that Gi
returns 1.

Game G0: G0 is the original experiment ExpAKE2msg,µ,`,A. In addition to the original
game, we add the sets Sentsi and Recvsi which is only a conceptual change. We have

Pr[ExpAKE2msg,µ,`,A ⇒ 1] = Pr[Win0] .

Game G1: In G1, we define the event NoMsgCon which happens for (i, s) if πsi accepts,
the intended partner j := Pidsi is uncorrupted when πsi accepts and there does not exist
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t ∈ [`] such that πsi is message-consistent with πtj . If event NoMsgCon happens, the
game will abort. Due to the difference lemma,

|Pr[Win0]− Pr[Win1]| ≤ Pr[NoMsgCon] .

We will prove the following lemma.

Lemma 9. There exists an adversary BSIG against SIG such that

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] ≤ Pr[NoMsgCon] ≤ Advmu-corr
SIG,µ (BSIG).

Proof. If there exists an oracle πtj such that πsi is message-consistent with πtj and
Pidtj = i, then due to correctness of KEM, πsi is also partnered to πtj . It follows that
Pr∃(i,s)[(1) ∧ (2) ∧ (3.1)] ≤ Pr[NoMsgCon].

To prove that Pr[NoMsgCon] ≤ Advmu-corr
SIG,µ (BSIG), we construct adversary BSIG against

MU-EUF-CMAcorr security of SIG. BSIG inputs the public parameter ppSIG and a list of
verification keys {vki}i∈[µ] and has access to a signing oracle OSign(·, ·) and a corrupt
oracle OCorr(·). BSIG then runs ppKEM ←$ KEM.Setup and sets ppAKE := (ppSIG, ppKEM)
and PKList := {vki}i∈[µ]. It initializes all variables and then runs A on ppAKE and
PKList. If A queries OAKE, BSIG responds as follows.

• Send(i, s, j,msg = >): In order to get σ1, BSIG queries its signing oracleOSign(i, (Pi,
Pj , p̂k)).

• Send(i, s, j,msg = (p̂k, σ1)): In order to get σ2, BSIG queries its signing oracle
OSign(i, (Pj , Pi, p̂k, σ1, c)).

• Corrupt(i): BSIG queries its own oracle OCorr(i) to obtain the signing key sski
and returns sski to A.

• Queries Send(i, s, j, (c, σ2)), RegisterCorrupt, SessionKeyReveal and Test can be
simulated as in G0.

During the simulation, BSIG checks if NoMsgCon happens. If this is the case, there exists
an oracle πsi such that πsi has accepted and j := Pidsi is uncorrupted at that point in
time.

Now we show that then there is a valid message-signature pair (m∗, σ∗) in Sentsi and
Recvsi such that Ver(vkj ,m∗, σ∗) = 1 and m∗ is different from any message m signed
by πtj for all t ∈ [`]. Since πsi is accepted, Sentsi 6= ∅ and Recvsi 6= ∅.
Case 1: πsi sent the first message. Let Sentsi = {(p̂k, σ1)} and Recvsi = {(c, σ2)}. We

have Ver(vkj , (Pi, Pj , p̂k, σ1, c), σ2) = 1, since (c, σ2) ∈ Recvsi . For any oracle πtj
with Recvtj = {(p̂k′, σ′1)} 6= ∅ and Senttj = {(c′, σ′2)} 6= ∅, NoMsgCon implies that
(p̂k, c) 6= (p̂k′, c′). In this case, BSIG sets (m∗, σ∗) := ((Pi, Pj , p̂k, σ1, c), σ2).

Case 2: πsi received the first message. Let Recvsi = {(p̂k, σ1)} and Sentsi = {(c, σ2)}.
We have Ver(vkj , (Pj , Pi, p̂k), σ1) = 1, since Recvsi 6= ∅. For any oracle πtj with
Senttj = {(p̂k′, σ′1)} 6= ∅, NoMsgCon implies that p̂k 6= p̂k′. In this case, BSIG sets
(m∗, σ∗) := ((Pj , Pi, p̂k), σ1).

As soon as event NoMsgCon happens, BSIG retrieves the message-signature (m∗, σ∗) pair
as just described and outputs (j,m∗, σ∗). As Pj is uncorrupted, BSIG has not queried
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OCorr(j) and m∗ is different from all signing queries for j, which concludes the proof
of Lemma 9. �

Before moving to G2, let us bound (1) ∧ (2) ∧ (3.2).

Multiple Partners. Event (1) ∧ (2) ∧ (3.2) happens if there exists any oracle πsi that
has accepted with Aflagsi = false and has more than one partner oracle. We can show
that

Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] ≤ (µ`)2 · 2−γ .

The session key only depends on the ephemeral public key p̂k and the ciphertext c. In
the following, we assume that there are two oracles πtj and πt

′

j′ such that πsi is partnered
to both πtj and πt

′

j′ . We distinguish two cases:
Case 1: πsi sent the first message. Let p̂k be the ephemeral public key determined by the

internal randomness of πsi . Let (c,K)← Encap(p̂k; r) and (c′,K ′)← Encap(p̂k; r′),
where r, r′ is the internal randomness of πtj and πt

′

j′ , respectively. As πsi is partnered
to both oracles, this implies that ksi = Decap(ŝk, c) = Decap(ŝk, c′). By the
correctness and γ-diversity of KEM, we have ksi = K = K ′ which will happen
with probability at most 2−γ .

Case 2: πsi received the first message. Let p̂k and p̂k′ be the public keys determined
by the internal randomness of πtj and πt

′

j′ , respectively. Let r be the internal
randomness of πsi which is used by Encap. The original keys are derived from
(c,K) ← Encap(p̂k; r) and (c′,K ′) ← Encap(p̂k′; r). As πsi is partnered to both
oracles, ksi = K = K ′. Due to γ-diversity of KEM, this will happen only with
probability at most 2−γ .

As there are µ` oracles, we can upper bound the probability for event (1) ∧ (2) ∧ (3.2)
by (µ`)2 · 2−γ .
At this point note that

Pr[WinAuth] = Pr
∃(i,s)

[(1) ∧ (2) ∧ ((3.1) ∨ (3.2))]

≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.1)] + Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)]

≤ Advmu-corr
SIG,µ (BSIG) + (µ`)2 · 2−γ .

Game G2: In G2, we check the partnership Partner(πsi ← πtj) by message-consistency
MsgCon(πsi ← πtj) if Ψs

i = accept and Aflagsi = false. We claim that

|Pr[Win1]− Pr[Win2]| ≤ Pr
∃(i,s)

[(1) ∧ (2) ∧ (3.2)] ≤ (µ`)2 · 2−γ .

Recall that if NoMsgCon does not happen, we know that each oracle πsi that has ac-
cepted with Aflagsi = false is partnered to and message-consistent with an oracle πtj . If
any such oracle πsi has a unique partner, then G1 is identical to G2. On the other hand,
the probability that there exists an oracle πsi that has accepted with Aflagsi = false
and has multiple partners is Pr∃(i,s)[(1) ∧ (2) ∧ (3.2)], which is bounded by (µ`)2 · 2−γ .
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BO
β
Encap(·),ODecap(·,·)

KEM (ppKEM, pk1, ..., pkµ`) :
ppSIG ←$ SIG.Setup
For i ∈ [µ]:

(vki, sski) ←$ SIG.Gen(ppSIG)
crpi := false

PKList := {vki}i∈[µ]; b ←$ {0, 1}
For (i, s) ∈ [µ]× [`]:

varsi := (Pidsi , ksi ,Ψs
i ) := (∅, ∅, ∅)

(Sentsi ,Recvsi ) := (∅,∅)
Aflagsi := false; T si := false; kRevsi := false

NoMsgCon := false
b∗ ← AOAKE(·)(ppAKE,PKList)
If b∗ = b: Return β∗ := 0
Else: Return β∗ := 1

// During the execution BKEM checks if the following
// flag is set to true and if so, it aborts immediately:

NoMsgCon := true, If ∃i, s ∈ [µ]× [`] s.t. (1′) ∧ (2′) ∧ (3′).
Let j := Pidsi .
(1′) Ψs

i = accept
(2′) Aflagsi = false
(3′) @t ∈ [`] s.t. MsgCon(πsi ← πtj)

OAKE(query):
If query=Test(i, s):

If Ψs
i 6= accept ∨ Aflagsi = true ∨ kRevsi = true
∨ T si = true:

Return ⊥
Let j := Pidsi
If ∃t ∈ [`] s.t. MsgCon(πsi ← πtj) ∧ ktj = ksi :

If kRevtj = true ∨ T tj = true: Return ⊥
T si := true
k0 := ksi ; k1 ←$ K
Return kb

If query=SessionKeyReveal(i, s):
If Ψs

i 6= accept: Return ⊥
If T si = true: Return ⊥
Let j := Pidsi
If ∃t ∈ [`] s.t. T tj = true:

If MsgCon(πtj ← πsi ) ∧ ktj = ksi : Return ⊥
kRevsi := true; Return ksi

OAKE(query):
If query=Send(i, s, j,msg):

If Ψs
i = accept: Return ⊥

If msg = >: �session is initiated
Pidsi := j
Let n := (i− 1)µ+ s; p̂k := pkn
σ1 ←$ Sign(sski, (Pi, Pj , p̂k))
msg′ := (p̂k, σ1)

If msg = (p̂k, σ1): �first message
Pidsi := j
If Ver(vkj , (Pj , Pi, p̂k), σ1) 6= 1:

Ψs
i := reject; Return ⊥

If crpj = false:
Then ∃ unique t s.t. p̂k output by πtj
Let n := (j − 1)µ+ t

(c,Kβ)← OβEncap(n); ksi := Kβ

Else:
(c,K) ←$ Encap(p̂k); ksi := K

σ2 ←$ Sign(sski, (Pj , Pi, p̂k, σ1, c))
Ψs
i := accept

msg′ := (c, σ2)
If msg = (c, σ2): �second message

Choose (p̂k, σ1) ∈ Sentsi
If Pid 6= j or Ver(vkj , (Pi, Pj , p̂k, σ1, c), σ2) 6= 1:

Ψs
i := reject; Return ⊥

Let n := (i− 1)µ+ s and j := Pidsi
If ∃t s.t. Recvtj = {(p̂k, ·)} ∧ Senttj = {(c, ·)}:

ksi := ktj
Else:

K ← ODecap(n, c); ksi := K
Ψs
i := accept

msg′ := ∅
Recvsi := Recvsi ∪ {msg}; Sentsi := Sentsi ∪ {msg′}
If Ψs

i = accept:
If crpj = true: Aflagsi := true

Return msg′

Figure 13: Adversary BKEM against MUC-otCCA security of KEM for the proof of
Theorem 3. Queries to OAKE where query∈ {Corrupt,RegisterCorrupt} are defined as in
the original game ExpAKE,µ,`,A in Figure 5.

Thus, the claims follows by the difference lemma.

In order to bound Pr[Win2], we construct an adversary BKEM against MUC-otCCA
security of KEM (see Figure 13). We will show that∣∣Pr[Win2]− 1

2
∣∣ ≤ 2 · Advmuc-otcca

KEM,µ` (BKEM) .

As in the proof of Theorem 2, we make use of the fact that we can not only replace the
session key of an oracle when it is tested but of all oracles that are possibly tested. The
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difference to AKE3msg is that now the adversary can replay the ephemeral public key p̂k
to other oracles, which is why we need multiple OβEncap queries.

Let β be the random bit of BKEM’s challenger. BKEM inputs the public parameter
ppKEM and {pkn}n∈[µ`]. BKEM generates the public parameter for SIG and signature
key pairs (vki, sski) for i ∈ [µ] and sets PKList := {vki}i∈[µ]. It initializes all variables,
chooses a random challenge bit b←$ {0, 1} and runs A. If A makes a query to OAKE,
BKEM simulates the response as follows:
– Send(i, s, j,msg = >): BKEM uses the public key with index (i−1)µ+s as ephemeral
public key, i.e. p̂k := pk(i−1)µ+s.

– Send(i, s, j,msg = (p̂k, σ1)): If Pj is uncorrupted, then due to the fact that NoMsgCon
does not happen, there exists a unique oracle πtj such that p̂k was output by πtj .
Furthermore, n = (j − 1)µ+ t is the index of that public key. Then BKEM queries
OβEncap(n), receives a ciphertext and key (c,Kβ) and sets ksi := Kβ . If Pj is corrupted,
BKEM runs Encap(p̂k) itself to compute (c,K). It also computes a signature σ2 as
the protocol specifies and outputs (c, σ2).

– Send(i, s, j,msg = (c, σ2)): Let n = (i−1)µ+s. Then, πsi sent p̂kn. If there exists an
oracle πtj that has received p̂kn and has sent c, then BKEM sets ksi := ktj . Otherwise,
BKEM queries ODecap(n, c), receives K and sets ksi := K.

– Test(i, s): After ruling out trivial attacks TA1, TA2 and TA3, BKEM checks for
trivial attacks TA4 and TA5 using message-consistency check MsgCon(πsi ← πtj)
and tests if ktj = ksi . If it does not output ⊥, BKEM sets k0 = ksi and k1 ←$ K and
outputs kb.

– SessionKeyReveal(i, s): After ruling out trivial attack TA2, BKEM checks for trivial
attack TA4 by checking if there exists an oracle πtj such that πtj is tested and
MsgCon(πtj ← πsi ). If further ktj = ksi , BKEM returns ⊥. Otherwise, it outputs ksi .

– Queries Corrupt and RegisterCorrupt and can be simulated as in G2.
Finally, A outputs b∗ and BKEM outputs β∗ := 0 if b∗ = b and β∗ := 1 otherwise.
BKEM may query OβEncap multiple times on the same ephemeral public key p̂k as we

cannot prevent replay attacks. However, each query to Send(i, s, j,msg = >) chooses a
different ephemeral public key. When the oracle receives a ciphertext, it accepts and
thus ODecap is called at most once. In the following, we will argue that BKEM perfectly
simulates G2 if β = 0, and that A’s view is independent of b if β = 1. The analysis is
the same as in the proof of Theorem 2. We have

Advmuc-otcca
KEM,µ` (BKEM) =

∣∣Pr[β∗ = β]− 1
2
∣∣

=
∣∣ 1

2 · Pr[β∗ = β | β = 0] + 1
2 · Pr[β∗ = β | β = 1]− 1

2
∣∣

=
∣∣ 1

2 · Pr[Win2] + 1
2 ·

1
2 −

1
2
∣∣ = 1

2
∣∣Pr[Win2]− 1

2
∣∣ .

Collecting the probabilities yields the bound in Theorem 3. �

B Proof of Lemma 4
We recall random self-reducibility of the MDDH assumption.
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H0, H1, H2,c , H3 :

β = 0
PG ←$ GGen
B ←$ U3k,k
For 1 ≤ i ≤ λ and j = 0, 1:

xi,j ←$ Z3k
q

ppMAC := (PG, [B]1, ([B>xi,j ]1)1≤i≤λ,j=0,1)
For 1 ≤ i ≤ µ:
x′i ←$ Zq

AOMac(·),OVer(·,·),O′Corr(·)(ppMAC)
Return β

O′Corr(i)
L := L ∪ {i}
Return [x′i]1

OMac(i, hm):
Q := Q∪ {(i, hm)}
s ←$ Zkq ; t := Bs ∈ Z3k

q ; t ←$ Z3k
q

u := x′i + t>x(hm) ∈ Zq
u := x′i + t>(B⊥RFc(hm|c) + x(hm))

u ←$ Zq
Return σ := ([t]1, [u]1)

OVer(i∗, hm∗, ([t∗]1, [u∗]1)): �at most once
If (i∗, hm∗) ∈ Q ∨ (i∗ ∈ L):

Return 0
h := x(hm∗)
h := B⊥RFc(hm∗|c) + x(hm∗)

h := B⊥RFλ(hm∗|λ) + x(hm∗)
If [u∗]1 = [x′i∗ ]1 + [t∗>]1 · h:
β := 1
Return 1

Else: Return 0

Figure 14: Games H0,H1,H2,c,H3,H4 for proving Lemma 4 where 0 ≤ c ≤ λ and
RFc : {0, 1}c → Z2k

q is a random function.

For Q ∈ N, W ←$ Zk×Qq , U ←$ Z`×Qq , we consider the Q-fold D`,k-MDDH problem
which is to distinguish the distributions ([A], [AW]) and ([A], [U]). Essentially, the Q-
fold D`,k-MDDH problem contains Q independent instances of the D`,k-MDDH problem
(with the same A but different wi). The following lemma gives a tight reduction.

Lemma 10 (Random self-reducibility [EHK+13]). For ` > k and any matrix distribu-
tion D`,k, the D`,k-MDDH assumption is random self-reducible. In particular, for any
Q ≥ 1 and any adversary A there exists an adversary B with

AdvQ-MDDH
GGen,D`,k,Gs(B) := Pr [B (PG, [A]s, [AW]s)⇒ 1]− Pr [B (PG, [A]s, [U]s)⇒ 1]

≤ (`− k) AdvMDDH
GGen,D`,k,Gs(A) + 1

q − 1 ,

where PG ←$ GGen, A←$ D`,k, W ←$ Zk×Qq , U ←$ Z(k+1)×Q
q , and T(B) ≈ T(A).

Lemma 4. We prove Lemma 4 by the sequence of games defined in Figure 14. Let A be
an adversary against the security game UF-CMAcorr, and let Wini denote the probability
that Hi returns 1.
Game H0: This is the same game as UF-CMAcorr. Thus,

Pr[UF-CMAcorr
A ⇒ 1] = Pr[Win0].

Game H1: In H1, we switch t in OMac from Span(B) to random over Z3k
q . By using

the Qe-fold U3k,k-MDDH assumption and Lemma 10, we have

|Pr[Win0]− Pr[Win1]| ≤ 2kAdvMDDH
GGen,U3k,k,G1

(B) + 1
q − 1 .
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Game H2,c (0 ≤ c ≤ λ): In H2,c, we use a random function RFc : {0, 1}c → Z2k
q to

randomize OMac and OVer queries.
Before we justify the difference, we recall some useful linear algebra facts for the

following proofs. For a random matrix B ∈ Z3k×k
q , there is a non-zero kernel matrix

B⊥ ∈ Z3k×2k
q such that B>B⊥ = 0. It is efficient to generate random B0,B1,B∗0,B∗1 ∈

Z3k×k
q such that: (B ‖ B0 ‖ B1) is a basis for Z3k

q ; (B∗0 ‖ B∗1) is a basis for Span(B⊥);
and B>0 B∗1 = B>1 B∗0 = 0. Figure 15 visualizes these properties.

basis for Z3k
q

basis for Span(B⊥)

B B0 B1

B∗0 B∗1

Figure 15: Solid lines mean orthogonal: B>B∗0 = B>1 B∗0 = 0 = B>B∗1 = B>0 B∗1 ∈
Zk×kq .

We show that H1 and H2,0 are identical by viewing x1,b as x1,b + B⊥RF0(ε) (for
both b = 0, 1) where RF0(ε) is a fixed random value. Thus,

Pr[Win1] = Pr[Win2,0].

To bound the difference between H2,c and H2,c+1 (for 0 ≤ c ≤ λ− 1), we define a
sequence of games in Figure 16.
Game H2,c,1: In H2,c,1, instead of generating a random t in OMac, we choose t from
Span(B ‖ B0) (if hmj+1 = 0) or Span(B ‖ B1) (if hmj+1 = 1). This is the same step as
Lemma 17 of [LP20]. By using the Qe-fold U3k,k-MDDH assumption in G1 twice (one
with [B0]1 and the other with [B1]1) and Lemma 10, we have

|Pr[Win2,c]− Pr[Win2,c,1]| ≤ 4kAdvMDDH
GGen,U3k,k,G1

(B) + 2
q − 1

Game H2,c,2: Let ZFc,OFc : {0, 1}c → Zkq be random functions. In H2,c,2, we decompose
the terms B⊥RFc(hm|c) in OMac as B∗0ZFc(hm|c) + B∗1OFc(hm|c). Similarly, we also
decompose the terms B⊥RFc(hm∗|c) in OVer as B∗0ZFc(hm∗|c) + B∗1OFc(hm∗|c). Since
(B∗0 ‖ B∗1) is a basis for Span(B⊥), these changes will not modify the distribution, and
H2,c,1 and H2,c,2 are identical. Thus, we have

Pr[Win2,c,1] = Pr[Win2,c,2].

Game H2,c,3: We define

ZFc+1(hm|c+1) =
{

ZFc(hm|c) (if hmc+1 = 0)
ZFc(hm|c) + ZF′c(hm|c) (if hmc+1 = 1)

, (10)

where ZF′c : {0, 1}c → Zkq is another independent random function. Note that ZFc+1 :
{0, 1}c+1 → Zkq is a random function.
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H2,c, H2,c,1, H2,c,2 , H2,c,3 , H2,c,4 :

β = 0
PG ←$ GGen
B ←$ U3k,k

B,B0,B1, B∗0,B∗1 ←$ U3k,k

with the constrains:
− (B ‖ B0 ‖ B1) is a basis for Z3k

q

− (B∗0 ‖ B∗1) is a basis for Span(B⊥)
− B>0 B∗1 = B>1 B∗0 = 0

For 1 ≤ i ≤ λ and j = 0, 1:
xi,j ←$ Z3k

q

ppMAC := (PG, [B]1, ([B>xi,j ]1)1≤i≤λ,j=0,1)
For 1 ≤ i ≤ µ:
x′i ←$ Zq

AOMac(·),OVer(·,·),O′Corr(·)(ppMAC)
Return β

O′Corr(i)
L := L ∪ {i}
Return [x′i]1

OMac(i, hm):
Q := Q∪ {(i, hm)}
t ←$ Z3k

q

If hmc+1 = 0
t := (B ‖ B0) · s

If hmc+1 = 1
t := (B ‖ B1) · s

δ := B⊥RFc(hm|c)
δ := B∗0ZFc(hm|c) + B∗1OFc(hm|c)

δ := B∗0ZFc+1(hm|c+1) + B∗1OFc(hm|c)

δ := B∗0ZFc+1(hm|c+1) + B∗1OFc+1(hm|c+1)
u := x′i + t>(δ + x(hm))
Return σ := ([t]1, [u]1)

OVer(i∗, hm∗, ([t∗]1, [u∗]1)): �at most once
If (i∗, hm∗) ∈ Q ∨ (i∗ ∈ L):

Return 0
δ∗ := B⊥RFc(hm∗|c)
δ∗ := B∗0ZFc(hm∗|c) + B∗1OFc(hm∗|c)

δ∗ := B∗0ZFc+1(hm∗|c+1) + B∗1OFc(hm∗|c)

δ∗ := B∗0ZFc+1(hm∗|c+1) + B∗1OFc+1(hm∗|c+1)
h := δ∗ + x(hm∗)
If [u∗]1 = [x′i∗ ]1 + [t∗>]1 · h:
β := 1
Return 1

Else: Return 0

Figure 16: Games for bounding the difference between H2,c and H2,c+1 (1 ≤ c ≤ λ−1).

In H2,c,3, we use this new random function ZFc+1 to simulate our security game. We
observe that:

• In a OMac(i, hm) query, if hmc+1 = 1, then t ∈ Span(B ‖ B1), and the answer
to the query is distributed identically in both H2,c,3 and H2,c,2; if hmc+1 = 0,
then ZFc+1(hm|c+1) = ZFc(hm|c) and its answer is distributed identically in both
games.

• In a OVer(i∗, hm∗) query, if hm∗c+1 = 0, then the answer is distributed identically
in both games. If hm∗c+1 = 1, we can view xc+1,1 as xc+1,1 + B∗0w for w ←$ Zkq .
Since B>B∗0 = 0, w is perfectly hidden from the term [B>xc+1,1]1. Moreover,
in a OMac(i, hm) query, xc+1,1 appears if hmc+1 = 1. But, since B>1 ·B∗0 = 0, w
has never been leaked from OMac queries. By viewing w as ZFc+1(hm∗|c+1) (for
hm∗c+1 = 1), we have the one-time OVer(i∗, hm∗) query is distributed the same as
in both games.

As a result of the above arguments, we have

Pr[Win2,c,2] = Pr[Win2,c,3].
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Game H2,c,4: We define

OFc+1(hm|c+1) =
{

OFc(hm|c) + OF′c(hm|c) (if hmc+1 = 0)
OFc(hm|c) (if hmc+1 = 1)

, (11)

where OF′c : {0, 1}c → Zkq is another independent random function. Note again that
OFc+1 : {0, 1}c+1 → Zkq is a random function.

By a similar argument as in H2,c,3 (but in a symmetric manner), we can show that

Pr[Win2,c,3] = Pr[Win2,c,4].

To bound the difference between H2,c,4 and H2,c+1, we will do the same argument as in
H2,c,1 and H2,c,2 but in a reverse order. Namely, we first compose B∗0ZFc+1(hm|c+1) +
B∗1OFc+1(hm|c+1) to B⊥RFc+1(hm|c+1) for both OMac and OVer (which is only infor-
mation-theoretic), and switch t in OMac back to random (which is bounded by using
the MDDH assumption). Then we have

|Pr[Win2,c,4]− Pr[Win2,c+1]| ≤ 4kAdvMDDH
GGen,U3k,k,G1

(B) + 2
q − 1 .

Thus, the difference between H2,c and H2,c+1 is bounded by

|Pr[Win2,c]− Pr[Win2,c+1]| ≤ 8kAdvMDDH
GGen,U3k,k,G1

(B) + 4
q − 1 .

Game H3: Compared to H2,λ, the only change H3 is to choose u uniformly at random
from Zq. We show that, even with adaptive corruption O′Corr queries, this change does
not affect the view of adversary A, and H2,λ is identical to H3.

Our argument is as follows: For a OMac(i, hm) query in H2,λ, t is chosen uniformly
in Z3k

q and thus t>B⊥RFλ(hm) is a random value in Zq with overwhelming probability
(1− 2k/q), even if an (unbounded) adversary corrupts the corresponding x′i. Thus, we
have

|Pr[Win2,λ]− Pr[Win3]| ≤ 2k
q
.

Moreover, in H3, the information about x′i∗ is perfectly hidden from A, and thus A
can compute a ([t∗]1, [u∗]1) such that [u∗]1 = [x′i∗ ]1 + [t∗>]1 · h with probability 1/q,
and we have

Pr[Win3] ≤ 1
q
.

This completes the proof. �
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Abstract. We present two provably secure password-authenticated key ex-
change (PAKE) protocols based on a commutative group action. To date the
most important instantiation of isogeny-based group actions is given by CSIDH.
To model the properties more accurately, we extend the framework of cryp-
tographic group actions (Alamati et al., ASIACRYPT 2020) by the ability of
computing the quadratic twist of an elliptic curve. This property is always
present in the CSIDH setting and turns out to be crucial in the security analysis
of our PAKE protocols.
Despite the resemblance, the translation of Diffie-Hellman based PAKE protocols
to group actions either does not work with known techniques or is insecure (“How
not to create an isogeny-based PAKE”, Azarderakhsh et al., ACNS 2020). We
overcome the difficulties mentioned in previous work by using a “bit-by-bit”
approach, where each password bit is considered separately.
Our first protocol X-GA-PAKE` can be executed in a single round. Both parties
need to send two set elements for each password bit in order to prevent offline
dictionary attacks. The second protocol Com-GA-PAKE` requires only one set
element per password bit, but one party has to send a commitment on its
message first. We also discuss different optimizations that can be used to reduce
the computational cost. We provide comprehensive security proofs for our base
protocols and deduce security for the optimized versions.

Keywords: Password-authenticated key exchange, group actions, CSIDH

1 Introduction
Password-authenticated key exchange (PAKE) enables two parties to securely establish
a joint session key assuming that they only share a low-entropy secret known as the
password. This reflects that passwords are often represented in short human-readable
formats and are chosen from a small set of possible values, often referred to as dictionary.

Since the introduction of PAKE by Bellovin and Merritt [BM92], many PAKE proto-
cols have been proposed, including SPEKE [Jab96], SPAKE2 [AP05], J-PAKE [HR10]
and CPace [HL19]. In particular over the last few years, the design and construction
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of PAKE protocols has attracted increasing attention, as the Crypto Forum Research
Group (CFRG) which is part of the Internet Research Task Force (IETF) started a
selection process to decide which PAKE protocols should be used in IETF protocols.
Recently, CPace was selected as the recommended protocol for symmetric PAKE, where
both parties share the same password.

Different models have been used to formally prove security of PAKE protocols, like
indistinguishability-based models or the universal composability framework. In general,
a PAKE protocol should resist offline and online dictionary attacks. On the one hand
an adversary should not be able to perform an exhaustive search of the password offline.
On the other hand, an active adversary should only be able to try a small number of
passwords in one protocol execution. Furthermore, forward security ensures that session
keys are still secure, even if the password is leaked at a later point in time. The same
should hold if session keys are disclosed, which should not affect security of other session
keys.

CSIDH and Group Actions. The PAKE protocols mentioned above are mostly
based on a Diffie-Hellman key exchange in a prime order group. A promising post-
quantum replacement is isogeny-based key exchange. The different isogeny-based proto-
cols can be divided into two groups. On the one hand there are constructions based
on commutative group actions on a set of elliptic curves. The first proposals by Cou-
veignes [Cou06], and Stolbunov and Rostovtsev [RS06] suggested to use the action of
the class group cl(O) on the set of Fq-isomorphism classes of ordinary elliptic curves
with endomorphism ring O. In 2018, Castryck et al. showed that this idea can also be
adapted to the class group action on the set of Fp-isomorphism classes of supersingular
elliptic curves [CLM+18]. The resulting scheme is called CSIDH and constitutes the
first practical key exchange scheme based on class group actions.

In [Cou06], Couveignes introduces hard homogeneous spaces - an abstract framework
for group actions that models isogeny-based assumptions. This framework has been
further refined by Alamati et al. in [ADMP20]. Using the abstract setting of cryptographic
group actions the authors develop several new cryptographic primitives that can be
instantiated with CSIDH. On the other hand there is the Supersingular Isogeny Diffie-
Hellman (SIDH) protocol suggested by Jao and De Feo in 2011 [JD11]. Here, the set of
Fp2 -isomorphism classes of supersingular elliptic curves is considered. The endomorphism
ring of a supersingular elliptic curve over Fp2 is non-commutative, hence protocols based
on SIDH do not fall into the group action framework.

We now recall the framework of (restricted) effective group actions introduced in
[ADMP20]. Throughout, G denotes a finite commutative group and X a set. We assume
that G acts regularly on X via the operator ? : G × X → X . Regularity guarantees that
for any x, y ∈ X there exists precisely one group element g ∈ G satisfying y = g ? x.
Broadly speaking, we are interested in group actions, where evaluation is easy, but the
“discrete logarithm problem” is hard. Expressed differently:
– Given x ∈ X and g ∈ G, one can efficiently compute the set element y = g ? x.
– Given x, y ∈ X , it is hard to find the element g ∈ G satisfying y = g ? x.

These properties facilitate the definition of a Diffie-Hellman key exchange. Let x be
some fixed set element. Alice chooses a secret gA ∈ G and publishes yA = gA ? x.

236



Password-Authenticated Key Exchange from Group Actions

Similarly Bob chooses gB ∈ G and publishes yB = gB ? x. They can both compute
the shared secret yAB = gA ? yB = gB ? yA. The group action computational Diffie-
Hellman problem (GA-CDH) then states that given yA and yB, it is hard to compute
yAB . We refer to Section 3 for more precise definitions.

Contributions and Technical Details. Our main contributions are the two PAKE
protocols X-GA-PAKE` and Com-GA-PAKE` based on commutative group actions. These
are the first two provably secure PAKE protocols that are directly constructed from
isogenies.
Group Actions with Twists. To date the most important instantiation of isogeny-
based group actions is given by CSIDH. To model this situation more accurately, we
suggest an enhancement of the framework which includes the ability of computing
the quadratic twist of an elliptic curve efficiently. This property is inherent to CSIDH
(cf. [CLM+18]) and it turns out to be crucial in the security analysis of our PAKE
protocols. On the one hand, twisting allows us to construct an offline dictionary attack
against our first natural PAKE attempt GA-PAKE`. Notably, this first protocol is secure
for group actions where twisting is not possible efficiently. On the other hand, twists
play an important role in various security reductions applied to prove the security of
our new protocols X-GA-PAKE` and Com-GA-PAKE`. Interestingly, this is also the case
when twists are not part of any of the two problems involved in the reduction.
First attempt: GA-PAKE`. Our two secure PAKE protocols are modifications of
GA-PAKE`. In order to illustrate the main idea behind the protocols, we describe
GA-PAKE` in more detail here. The protocol (Figure 1) can be seen as an adaption of the
simple password exponential key exchange protocol SPEKE [Jab96] to the group action
setting. In SPEKE the password is used to hash to a generator of the group. Then the user
and the server establish a session key following the Diffie-Hellman key exchange. Directly
translating this protocol to the group action setting requires to hash the password to
a random set element x ∈ X . For isogeny-based group actions, this is still an open
problem, hence (at the moment) a straightforward translation of SPEKE is not possible
(see also [AJK+20, §4.1]). In GA-PAKE` we map the password to an `-tuple of elements
in X instead of hashing to one element. More precisely, two elements crs = (x0, x1) ∈ X 2

are fixed by a trusted party and a password pw = (b1, . . . , b`) ∈ {0, 1}` is mapped to
the tuple (xb1 , · · · , xb`) ∈ X `. Then a Diffie-Hellman key exchange is performed with
basis xbi for each i ∈ [`]. This means the user generates ` random group elements
u1, . . . , u` and computes the elements xU

1 = u1 ? xb1 , . . . , x
U
` = u` ? xb` which it sends

to the server. Similarly, the server generates ` random group elements s1, . . . , s` and
computes xS

1 = s1 ? xb1 , . . . , x
S
` = s` ? xb` which it sends to the user. Note that

the messages may be sent simultaneously in one round. Then both parties compute
zi = ui ? x

S
i = si ? x

U
i for each i ∈ [`]. Finally the session key K is computed as

K = H(U, S, xU
1 , ..., x

U
` , x

S
1, ..., x

S
` , pw, z1, ..., z`), where H : {0, 1}∗ → K is a hash function

into the key space K.
In Section 5, we present an offline dictionary attack against GA-PAKE` for group

actions with twists. This attack is not captured by the abstract group action framework
defined in [ADMP20] which underlines the necessity of our suggested enhancement
of the framework. Roughly speaking, the attack uses the fact that an attacker can
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User U Server S

crs := (x0, x1) ∈ X 2,

pw := (b1, ..., b`) ∈ {0, 1}`

(u1, ..., u`) $← G` (s1, ..., s`) $← G`

for i ∈ [`] for i ∈ [`]
xU
i := ui ? xbi xS

i := si ? xbi

for i ∈ [`] for i ∈ [`]
zi := ui ? x

S
i zi := si ? x

U
i

K := H(U,S, xU
1 , ..., x

U
` , x

S
1, ..., x

S
` , pw, z1, ..., z`)

xU
1 , ..., x

U
`

xS
1, ..., x

S
`

Figure 1: First Attempt: Protocol GA-PAKE`.

choose its message in dependence on the other party’s message. Using twists, it can
then achieve that certain terms in the key derivation cancel out and the session key no
longer depends on the other party’s input.

Secure PAKE: X-GA-PAKE` and Com-GA-PAKE`. The protocol X-GA-PAKE` is a
modified version of GA-PAKE`. Here security is achieved by doubling the message length
in the first round of the protocol and tripling it in the key derivation. Intuitively the
additional parts of the message can be viewed as an additional challenge for the key
derivation that inhibits an attacker from choosing its message depending on the other
party’s message. The security of the protocol relies on a new computational assumption,
SqInv-GA-StCDH, in which the adversary needs to compute the square and the inverse
of its input at the same time (cf. Definition 7, Theorem 1).

The protocol Com-GA-PAKE` is a modification of GA-PAKE` as well. In order to
achieve security against offline dictionary attacks, the protocol requires that the server
sends a commitment before receiving the first message from the user. This prevents
that any party chooses its message depending on the other party’s message. We reduce
the security of the protocol to the hardness of standard security assumptions in the
isogeny-based setting (Theorem 2). An overview of our results is provided in Figure 2.

Optimizations. Both X-GA-PAKE` and Com-GA-PAKE` require to compute multiple
group action evaluations. In the last section, we discuss two optimizations that can be
used to reduce the number of evaluations and show that these do not affect the security
of the protocols. The first makes a tradeoff between the size of the public parameters
(the common reference string crs) and the number of elements that have to be sent as
well as the group actions that have to be performed. The second optimization relies on
the possibility to compute twists efficiently, which is yet another advantage of adding
this property to the framework and which allows to decrease the size of the public
parameters by a factor of 2. We denote the final optimizations by Com-GA-PAKEt

`,N

and X-GA-PAKEt
`,N , where N is a parameter for the crs size. If N equals 1, we omit it.

An overview and example of the parameter choice is provided in Table 1.
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GA-GapCDH
(Definition 6)

SqInv-GA-StCDH
(Definition 7)

Sim-GA-StCDH
(Definition 12)

ISim-GA-StCDH
(Definition 15)

DSim-GA-StCDH
(Definition 9)

GA-PAKE`
(Figure 1)

EProposition 1

Com-GA-PAKE`
(Figure 11)

X-GA-PAKE`
(Figure 4)

Lemma 4
(using twists)

Lemma 1
(using twists)

Theorem 3

Theorem 2

Theorem 1

insecure instantiation: E
non-tight implication:

Figure 2: Overview of our security implications between assumptions (round boxes)
and schemes (square boxes). Note that there exists an attack against protocol GA-PAKE`
using twists which makes it insecure for CSIDH. Our two main protocols X-GA-PAKE`
and Com-GA-PAKE` are proven secure under protocol-specific assumptions, but we also
give reductions to simpler assumptions making use of the twisting property. Solid arrows
denote tight reductions, dashed arrows non-tight reductions.

Difficulties in constructing PAKE from Isogenies. Terada and Yoneyama [TY19]
proposed isogeny-based PAKE based on the EKE approach. The basic idea is that the
parties perform an SIDH or CSIDH key exchange where the messages are encrypted with
the password. However, as shown in [AJK+20], these protocols are not only vulnerable to
offline dictionary attacks, but a modified version is even vulnerable to man-in-the-middle
attacks. The main reason for the insecurity is that the elliptic curves used in the key
exchange and encrypted with the password are distinguishable from random bitstrings.
An exhaustive search over all passwords just requires to check if the decrypted message
is a valid curve.

Another proposal based on SIDH was made by Taraskin et al. [TSJL18]. In this
protocol the password is used to obfuscate the auxiliary points that are exchanged
during an SIDH key exchange. While their obfuscation method prevents a certain type
of offline dictionary attack, the authors were not able to provide a security proof for
their protocol. The same is true for a symmetric variant of the protocol proposed by
Soukharev and Hess [SH19]. Until now these are the only PAKE protocol based on
isogenies which are not broken.

As noted in [AJK+20], other popular Diffie-Hellman constructions may also not be
directly translated into the isogeny setting. The main reason is that hashing into the set
of supersingular elliptic curves is still an open problem. This approach is for example
used in SPEKE. (However, we show how to non-trivially translate the idea.) Also the
approach of J-PAKE seems difficult as in this scheme different public keys are combined
to obtain certain “mixed” public keys. In isogeny-based protocols, the public keys are
elliptic curves and there is no natural ring structure on the set of elliptic curves that
would allow to combine two elliptic curves.

In the following, we elaborate known generic constructions of PAKE from hash
proof systems (HPS) and oblivious transfer (OT). We explain that the only known
isogeny-based HPS is not suitable for generic constructions. On the other hand, the
isogeny-based OT protocols from the literature are suited for generic constructions.
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Protocol |crs| Elements Evaluations Rounds Assumption Rew. ROM
X-GA-PAKEt

`,N 2N−1 2`/N 5`/N 1 SqInv-GA-
StCDH no yes

↪→ (`,N) = (128, 8) 128 32 80
Com-GA-PAKEt

`,N 2N−1 `/N (+1) 2`/N 3 Sq-GA-GapCDH yes yes
↪→ (`,N) = (128, 8) 128 16 (+1) 32
OT-based` [LGd21] 1 3` (+6`) 11` 4 GA-CDH yes yes
↪→ ` = 128 1 384 (+768) 1408
OT-based`
[ADMP20, PVW08]

4 > `2 > `2 3 GA-DDH
+ CCA PKE no no

↪→ ` = 128 4 > 16, 000 > 16, 000

Table 1: Overview of our optimized protocols Com-GA-PAKEt
`,N and X-GA-PAKEt

`,N

and comparison to the only other CSIDH-based constructions. All protocols use a
bit-wise approach, i.e., passwords are treated as bitstrings of length `. Sample values
for ` = 128 are marked in gray. “Elements” refers to the number of set elements (+
strings or symmetric ciphertexts) that each party has to send. “Evaluations” refers to
the number of group action evaluations that each party has to perform. “Rew.” indicates
that rewinding is used to reduce to the assumption indicated in the table and GA-DDH
refers to the group action decisional Diffie-Hellman problem. We apply the compiler of
[CDVW12] to obtain OT-based constructions.

However, we show that the resulting PAKE protocols are less efficient than our new
proposals.

Using the framework of cryptographic group actions, Alamati et al. construct a
universal hash proof system [ADMP20, §4.1]. Their HPS is defined for the subset
membership problem based on the DDH assumption for group actions. However, we
need a different type of subset membership problem in order to construct PAKE. In
particular, the framework introduced by Gennaro and Lindell [GL03] and that of follow-
up works [GK10, KV11] uses an HPS for the language of ciphertexts of a public-key
encryption scheme. More concretely, given a public key of the encryption scheme, a pair
of message and ciphertext (m, c) is in the language of the HPS if c is a valid decryption
of m (under the given public key). Note that the public evaluation of the HPS can use
the encryption randomness as a witness. These kinds of HPS have been constructed
for ElGamal and Cramer-Shoup encryption in the prime-order group setting (e.g.,
[BBC+13]), however it is less clear how this will work for group actions. We illustrate
this for the simpler example of the “group action ElGamal” encryption scheme. The
main obstacle here is that due to the limited structure we cannot simply encrypt the
message by a one-time pad like operation (see for example [MOT20]). Instead, one
can additionally hash the set element that serves as the ElGamal KEM key and then
encrypt the message via XOR. However, this destroys all structure and makes it hard
to build a hash proof system for ciphertexts of this form. Therefore, we leave it as an
interesting open problem to build such an HPS from group actions which can then be
used to construct PAKE.
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It is well known that PAKE can also be generically constructed from OT. In
[CDVW12], Canetti et al. describe two different constructions: the first builds upon
a UC-secure OT protocol to construct a UC-secure PAKE and the second uses a
statistically receiver-private OT protocol to construct PAKE in a game-based security
model. In both constructions, the password is interpreted as a bit string. In particular,
for each individual password bit, the PAKE user and server run the OT protocol twice:
once taking the role of the OT sender for randomly chosen messages and once taking
the role of the OT receiver using the password bit to recover one of the messages chosen
by the other party. Together with some additional overhead consisting of nonces and/or
ciphertexts that need to be sent to compute the shared session key, this results in
a PAKE protocol of at least three rounds. That means, even for round-optimal and
efficient OT protocols, this approach makes the final construction quite inefficient. To
compare against our protocols, we apply the compiler of [CDVW12] to the following
two OT protocols.
– Alamati et al. propose a two-message statistically sender-private OT, however we can

construct a similar receiver-private OT protocol based on their dual-mode public-key
encryption scheme and the transformation given in [PVW08]. The resulting OT
protocol already uses a “bit-by-bit” approach, hence the resulting PAKE will have
communication and computation complexity quadratic in the parameter `.

– Recently, Lai et al. proposed a new very efficient CSIDH-based OT protocol using
twists and the random oracle model [LGd21]. However, in order to achieve active
security the protocol needs four rounds.1 Additionally applying the generic PAKE
compiler results in a protocol with complexity linear in `.

The efficiency of the generic constructions compared to our new protocols is given in
Table 1. Note that the computational complexity of the second OT-based protocol as
well as the complexity of our protocols is linear in the password length `. However
the constants are important for concrete instantiations. For ` = 128 and N = 8, our
optimized versions of X-GA-PAKE`,N (resp. Com-GA-PAKE`,N ) perform considerably
better. In particular, each party then has to send 32 (resp. 16) set elements and perform
80 (resp. 32) group action evaluations. Whereas each party would have to send 384
set elements and perform 1408 group action evaluations in the OT-based protocol.
Additionally, Com-GA-PAKE` is the only one-round protocol, where both parties send
simultaneous flows, which plays an important role for practical applications.

Open Problems and Future Work. Until now, protocols based on CSIDH or group
actions that use search problems together with the random oracle model do not consider
quantum access to the ROM [Yon19, FTY19, KTAT20, dKGV21, LGd21]. Since PAKE
proofs are already complex, we also did not prove security in the QROM. Although no
reprogramming of the random oracle is necessary, the main difficulty in the QROM is
to simulate the real session keys using the decision oracle. We leave this as future work.
We believe that we can easily allow quantum access to the additional random oracle

1 The original (three-round) version of this protocol was later found to have a (fixable) bug,
cf. https://iacr.org/submit/files/slides/2021/eurocrypt/eurocrypt2021/20/slide
s.pdf.
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that is used in Com-GA-PAKE` to commit to the message. In this case, the output is
transferred classically in the first message flow such that extraction is possible using
recently developed techniques [DFMS21].

As [LGd21], we use rewinding to reduce the interactive assumption underlying
Com-GA-PAKE` to a standard assumption. An interesting open question is whether
current techniques enabling quantum rewinding are applicable here.

Outline. Section 3 sets the framework for our paper. We introduce (restricted) effective
group actions with twists and define the computational assumptions underlying the
security of our protocols. In Section 4, we give some background on the security model
that is used in the subsequent sections. In Section 5 we present our first attempt for a
PAKE protocol, GA-PAKE`, and explain its security gap. Section 6 contains a thorough
analysis of our new secure protocol X-GA-PAKE`. In Section 7 we present the protocol
Com-GA-PAKE` and sketch the security proof. A full proof is provided in Appendix E.
Finally, we discuss possible optimizations of the protocols in Section 8.

2 Preliminaries

For integers m,n where m < n, [m,n] denotes the set {m,m + 1, ..., n}. For m = 1,
we simply write [n]. For a set S, s $← S denotes that s is sampled uniformly and
independently at random from S. y ← A(x1, x2, ...) denotes that on input x1, x2, ... the
probabilistic algorithm A returns y. AO denotes that algorithm A has access to oracle
O. An adversary is a probabilistic algorithm. We will use code-based games, where
Pr[G ⇒ 1] denotes the probability that the final output of game G is 1.

3 (Restricted) Effective Group Actions (with Twists)

In this section we recall the definition of (restricted) effective group actions from
[ADMP20], which provides an abstract framework to build cryptographic primitives
relying on isogeny-based assumptions such as CSIDH. Moreover, we suggest an enhance-
ment of this framework, by introducing (restricted) effective group actions with twists.
This addition is essential for the security analysis of our new PAKE protocols.

Definition 1 (Group Action). Let (G, ·) be a group with identity element id ∈ G, and
X a set. A map

? : G × X → X

is a group action if it satisfies the following properties:
1. Identity: id ?x = x for all x ∈ X .
2. Compatibility: (g · h) ? x = g ? (h ? x) for all g, h ∈ G and x ∈ X .

Remark 9. Throughout this paper, we only consider group actions, where G is commu-
tative. Moreover we assume that the group action is regular. This means that for any
x, y ∈ X there exists precisely one g ∈ G satisfying y = g ? x.
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Definition 2 (Effective Group Action). Let (G,X , ?) be a group action satisfying the
following properties:

1. The group G is finite and there exist efficient (PPT) algorithms for membership
and equality testing, (random) sampling, group operation and inversion.

2. The set X is finite and there exist efficient algorithms for membership testing and
to compute a unique representation.

3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i.e. to compute

g ? x given g and x.
Then we call x̃ ∈ X the origin and (G,X , ?, x̃) an effective group action (EGA).

In practice, the requirements from the definition of EGA are often too strong.
Therefore we will consider the weaker notion of restricted effective group actions.

Definition 3 (Restricted Effective Group Action). Let (G,X , ?) be a group action and
let g = (g1, ..., gn) be a generating set for G. Assume that the following properties are
satisfied:

1. The group G is finite and n = poly(log(#G)).
2. The set X is finite and there exist efficient algorithms for membership testing and

to compute a unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm that given gi ∈ g and x ∈ X , outputs gi ? x

and g−1
i ? x.

Then we call (G,X , ?, x̃) a restricted effective group action (REGA).

3.1 Isogeny-based REGAs

An important instantiation of REGAs is provided by isogeny-based group actions. We
will focus on the CSIDH setting and present a refined definition of REGAs tailored to
this situation.

Let p be a large prime of the form p = 4 · `1 · · · `n − 1, where the `i are small
distinct odd primes. Fix the elliptic curve E0 : y2 = x3 + x over Fp. The curve E0
is supersingular and its Fp-rational endomorphism ring is O = Z[π], where π is the
Frobenius endomorphism. Let È `p(O) be the set of elliptic curves defined over Fp, with
endomorphism ring O. The ideal class group cl(O) acts on the set È `p(O), i.e., there is
a map

? : cl(O)× È `p(O)→ È `p(O)
([a], E) 7→ [a] ? E,

satisfying the properties from Definition 1 [CLM+18, Theorem 7]. Moreover the analysis
in [CLM+18] readily shows that (cl(O), È `p(O), ?,E0 ) is indeed a REGA.

Elliptic curves in È `p(O) admit equations of the form EA : y2 = x3 +Ax2 +x, which
allows to represent them by their Montgomery coefficient A ∈ Fp. An intrinsic property
of the CSIDH group action which is not covered by Definition 3, is the following. For any
curve EA = [a] ? E0 ∈ È `p(O), its quadratic twist is easily computed as (EA)t = E−A
and satisfies the property (EA)t = [a]−1 ? E0.
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Definition 4 ((Restricted) Effective Group Action with Twists). We say that a (R)EGA
(G,X , ?, x̃) is a (Restricted) Effective Group Action with Twists ((R)EGAT) if there
exists an efficient algorithm that given x = g ? x̃ ∈ X computes xt = g−1 ? x̃.

As noted in [CLM+18, §10], this property contrasts with the classical group-based
setting. It has already been used for the design of new cryptographic primitives based
on CSIDH such as the signature scheme CSIFiSh [BKV19] and the OT protocol in
[LGd21]. Moreover, it is important to consider twists in the security analysis of schemes
based on group actions. In Section 5 we use twists to construct an attack on the protocol
GA-PAKE` showing that it cannot be securely instantiated with the CSIDH group action.
On the other hand, we prove that GA-PAKE` is secure when instantiated with a group
action without efficient twisting (Theorem 3).

3.2 Computational Assumptions

For cryptographic applications, we are interested in (restricted) effective group actions
that are equipped with the following hardness properties:
– Given (x, y) ∈ X 2, it is hard to find g ∈ G such that y = g ? x.
– Given (x, y0, y1) ∈ X 3, it is hard to find z = (g0 · g1) ? x, where g0, g1 ∈ G are such
that y0 = g0 ? x and y1 = g1 ? x.

In [ADMP20] such group actions are called cryptographic group actions, and in [Cou06]
they are called hard homogeneous spaces.

The two hardness assumptions are the natural generalizations of the discrete loga-
rithm assumption and the Diffie-Hellman assumption in the traditional group based
setting. In analogy to this setting, we introduce the notation

GA-CDHx(y0, y1) = g0 ? y1, where g0 ∈ G such that y0 = g0 ? x

and define the decision oracle

GA-DDHx(y0, y1, z) =
{

1 if GA-CDHx(y0, y1) = z,

0 otherwise.

For both, GA-CDH and GA-DDH, we omit the index x if x = x̃, i. e., we set
GA-CDHx̃(y0, y1) = GA-CDH(y0, y1) and GA-DDHx̃(y0, y1, z) = GA-DDH(y0, y1, z).

We now introduce three computational problems GA-StCDH, GA-GapCDH, SqInv-GA-
StCDH (Definitions 5 to 7). The security of our PAKE protocols relies on the hardness
of these problems.

The first two problems are variants of the standard Diffie-Hellman problem, where
an adversary is either given access to some fixed-basis decision oracles (indicated by
the prefix strong) or to a general decision oracle (indicated by the prefix gap). Note
that these problems were already defined and used in previous work [Yon19, FTY19,
KTAT20, dKGV21]. In contrast the problem from Definition 7 has not been studied in
any previous work. Therefore, we provide evidence for its hardness in Remark 11.

Definition 5 (Group Action Strong Computational Diffie-Hellman Problem (GA-
StCDH)). On input (g ? x̃, h ? x̃) ∈ X 2, the GA-StCDH problem requires to compute the
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set element (g ·h)? x̃. To an effective group action XXX ∈ {EGA,REGA,EGAT,REGAT},
we associate the advantage function of an adversary A as

AdvGA-StCDH
XXX (A) := Pr[AGA-DDH(g?x̃,·,·)(g ? x̃, h ? x̃)⇒ (g · h) ? x̃] ,

where (g, h) $← G2 and A has access to decision oracle GA-DDH(g ? x̃, ·, ·).

Definition 6 (Group Action Gap Computational Diffie-Hellman Problem (GA-GapCDH)).
On input (g?x̃, h?x̃) ∈ X 2, the GA-GapCDH problem requires to compute the set element
(g ·h)?x̃. To an effective group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we associate
the advantage function of an adversary A as

AdvGA-GapCDH
XXX (A) := Pr[AGA-DDH∗(g ? x̃, h ? x̃)⇒ (g · h) ? x̃] ,

where (g, h) $← G2 and A has access to a general decision oracle GA-DDH∗.

Remark 10. A group action where the group action computational Diffie-Hellman prob-
lem (without any decision oracle) is hard, is the same as a weak unpredictable group
action as defined by Alamati et al. [ADMP20]. Further details are given in Appendix A.
Also note that the ability to compute the twist of a set element does not help in solving
these problems. Hence, all results based on these problems remain true for (R)EGAT.

Definition 7 (Square-Inverse GA-StCDH (SqInv-GA-StCDH)). On input x = g ? x̃, the
SqInv-GA-StCDH problem requires to find a tuple (y, y0, y1) ∈ X 3 such that y0 = g2 ? y
and y1 = g−1 ? y. For a group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define
the advantage function of A as

AdvSqInv-GA-StCDH
XXX (A) := Pr

y0 = GA-CDHxt(x, y)
y1 = GA-CDH(xt, y)

∣∣∣∣∣∣
g $← G
x = g ? x̃

(y, y0, y1)← AO(x)

 ,

where O = {GA-DDHxt(x, ·, ·),GA-DDH(x, ·, ·)}.

Remark 11. Intuitively SqInv-GA-StCDH is hard if we assume that the adversary can
only use the group and twist operation. To go into more detail, A can choose y only
based on known elements, that is either based on x̃, its input x or xt.

If A chooses y = α ? x̃ for some α ∈ G, then it can easily compute y1 = α ? xt, but
not y0 = αg2 ? x̃. If A chooses y = α ? x, then computing y1 = α ? x̃ is trivial, but
computing y0 = αg3 ? x̃ is hard. If A chooses y = α ? xt, then computing y0 = α ? x is
trivial, but computing y1 = αg−2 ? x̃ is hard.

4 Password Authenticated Key Exchange
Password-authenticated key exchange (PAKE) allows two parties, typically referred to
as the user and the server, to establish a shared session key with the help of a short
secret, known as a password, which can be drawn from a small set of possible values.
To prove security of a PAKE protocol, we use the indistinguishability-based security
model by Bellare, Pointcheval and Rogaway [BPR00] and its extension to multiple test
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queries by Abdalla, Fouque and Pointcheval [AFP05]. In our proofs, we further adapt
the game-based pseudocode used in [AB19].

The name spaces for users U and servers S are assumed to be disjoint. Each pair of
user and server (U, S) ∈ U × S holds a shared password pwUS. A party P denotes either
a user or server. Each party P has multiple instances πiP and each instance has its own
state. We denote the session key space by K. Passwords are bit strings of length ` and
we define the password space as PW ( {0, 1}`.

Instance State. The state of an instance πiP is a tuple (e, tr,K, acc) where
– e stores the (secret) ephemeral values chosen by the party in that instance (in our
case group elements).

– tr stores the trace of that instance, i.e., the user and server name involved in the
protocol execution and the messages sent and received by that instance.

– K is the accepted session key.
– acc is a Boolean flag that indicates whether the instance has accepted the session
key. As long as the instance did not receive the last message, acc = ⊥.

To access individual components of the state, we write πtP.{e, tr,K, acc}.

Partnering. Partnering is defined via matching conversations. In particular, a user
instance πt0U and a server instance πt1S are partnered iff

πt0U .acc = πt1S .acc = true and πt0U .tr = πt1S .tr .

Two user instances are never partnered, neither are two server instances. We define a
partner predicate Partner(πt0P0

, πt1P1
) which outputs 1 if the two instances πt0P0

and πt1P1
are partnered and 0 otherwise.

Security Experiment. The security experiment is played between a challenger and an
adversary A. The challenger draws a random challenge bit β and creates the public
parameters. Then it outputs the public parameters to A. Now A has access to the
following oracles:
– Execute(U, t0,S, t1): one complete protocol execution between user instance πt0U
and server instance πt1S . This query models security against passive adversaries.

– SendInit, SendResp, SendTermInit, SendTermResp: send oracles to model
security against active adversaries. SendTermResp is only available for three-
message protocols.

– Corrupt(U,S): outputs the shared password pwUS of U and S.
– Reveal(P, t): outputs the session key of instance πtP.
– Test(P, t): challenge query. Depending on the challenge bit β, the experiment
outputs either the session key of instance πtP or a uniformly random key. By
πtP.test = true, we mark an instance as tested.

We denote the experiment by ExpPAKE. The pseudocode is given in G0 in Figure 5,
instantiated with our first PAKE protocol.

Freshness. During the game, we register if a query is allowed to prevent trivial wins.
Therefore, we define a freshness predicate Fresh(P, i). An instance πtP is fresh iff
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1. πtP accepted.
2. πtP was not queried to Test or Reveal before.
3. At least one of the following conditions holds:

3.1 πtP accepted during a query to Execute.
3.2 There exists more than one partner instance.
3.3 A unique fresh partner instance exists.
3.4 No partner exists and Corrupt was not queried.

Definition 8 (Security of PAKE). We define the security experiment, partnering and
freshness conditions as above. The advantage of an adversary A against a password
authenticated key exchange protocol PAKE in ExpPAKE is defined as

AdvPAKE(A) :=
∣∣∣∣Pr[ExpPAKE ⇒ 1]− 1

2

∣∣∣∣ .
A PAKE is considered secure if the best the adversary can do is to perform an online

dictionary attack. More concretely, this means that the advantage of the adversary should
be negligibly close to qs/|PW| when passwords are drawn uniformly and independently
from PW, where qs is the number of send queries made by the adversary.

Note that this definition captures weak forward secrecy. We will give an extended
security definition capturing also perfect forward secrecy in Appendix F, as well as
proofs for our protocols.

5 First Attempt: Protocol GA-PAKE`
The GA-PAKE` protocol was already introduced in the introduction (Section 1). We refer
to Figure 1 for a description of the protocol. In contrast to the two PAKE protocols from
Sections 7 and 6, GA-PAKE` is not secure for EGATs, i.e., if it is possible to compute
twists of set elements efficiently. In particular it should not be instantiated with the
CSIDH-group action. However, it is instructive to examine its security and it serves as
a good motivation for the design of the two secure PAKE protocols X-GA-PAKE` and
Com-GA-PAKE`.

In this section we present an offline dictionary attack against GA-PAKE` for (R)EGAT.
However, if twisting is hard, then we can prove security of GA-PAKE` based on a
hardness assumption that is similar to the simultaneous Diffie-Hellman problem which
was introduced to prove the security of TBPEKE and CPace [PW17, AHH21]. Our
proof for GA-PAKE` is given in Appendix C.

Proposition 1. For EGATs, the protocol GA-PAKE` is vulnerable to offline dictionary
attacks.

Proof. We construct an adversary A that takes the role of the server. The attack is
summarized in Figure 3. After receiving xU, the adversary computes

xS
i = s̃i ? (xU

i )t = s̃i ? (ui ? xbi)t = (s̃i · u−1
i ) ? xtbi = (s̃i · u−1

i · g
−1
bi

) ? x̃

for each i ∈ [`] and sends xS
1, . . . , x

S
` to the user. Then the user computes zi = ui ? x

S
i =

(s̃i · g−1
bi

) ? x̃ = s̃i ? x
t
bi
. For each i ∈ [`], the adversary A can now compute zi for both
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User U Adversary A

crs := (x0, x1) ∈ X 2,

pw := (b1, ..., b`) ∈ {0, 1}`

(u1, ..., u`) $← G` (s̃1, ..., s̃`) $← G`

for i ∈ [`] for i ∈ [`]
xU
i := ui ? xbi xS

i := s̃i ? (xU
i )t

for i ∈ [`] for i ∈ [`]
zi := ui ? x

S
i zi := s̃i ? x

t
0 for bi = 0

zi := s̃i ? x
t
1 for bi = 1

K := H(U,S, xU
1 , ..., x

U
` , x

S
1, ..., x

S
` , pw, z1, ..., z`)

xU = (xU
1 , ..., x

U
` )

xS = (xS
1, ..., x

S
` )

Figure 3: Attack against GA-PAKE` using twists.

possibilities bi = 0 and bi = 1. This allows him to compute K for all possible passwords
pw ∈ PW ( {0, 1}` (being offline).

This offline attack can easily be used to win the security experiment with high probability.
A only needs to issue two send queries. It chooses any user U, initiates a session and
computes its message xS

1, ..., x
S
` as described in Figure 3. It reveals the corresponding

session key and starts its offline attack by brute forcing all pw ∈ PW until it finds a
match for a candidate pw∗. Now A issues its second send query. This time it computes
the message following the protocol using pw∗ and derives a key K∗. It issues a test
query and gets Kβ . If K∗ = Kβ , then it outputs 0, otherwise it outputs 1. In case there
is more than one password candidate, i.e., two inputs to H lead to the same K∗, then
A can issue another send and reveal query to rule out false positives. In the end, it can
still happen that β = 1 and K∗ = K, but this event only occurs with probability 1/|K|.

Corollary 5. For any adversary A against GA-PAKE` instantiated with an EGAT, we
have Pr[ExpGA-PAKE` ⇒ 1] = 1− 1

|K| .

6 X-GA-PAKE`: One-Round PAKE from Group
Actions

In the previous section we showed that GA-PAKE` is insecure when instantiated with
an EGAT. Here, we present the modification X-GA-PAKE`, which impedes the offline
dictionary attack presented in that section. Broadly speaking, the idea is to double the
message size of both parties in the first flow. In the second flow it is then necessary to
compute certain “cross products” which is only possible if the previous message has
been honestly generated. The letter X in X-GA-PAKE` stands for cross product.

248



Password-Authenticated Key Exchange from Group Actions

User U Server S

crs := (x0, x1) ∈ X 2,

pw := (b1, ..., b`) ∈ {0, 1}`

(u1, ..., u`) $← G` (s1, ..., s`) $← G`

(û1, ..., û`) $← G` (ŝ1, ..., ŝ`) $← G`

for i ∈ [`] for i ∈ [`]
xU
i := ui ? xbi xS

i := si ? xbi
x̂U
i := ûi ? xbi x̂S

i := ŝi ? xbi

for i ∈ [`] for i ∈ [`]
zi := (ui ? xS

i , ûi ? x
S
i , ui ? x̂

S
i ) zi := (si ? xU

i , si ? x̂
U
i , ŝi ? x

U
i )

K := H(U,S, xU
1 , ..., x

U
` , x̂

U
1 , . . . x̂

U
` , x

S
1, ..., x

S
` , x̂

S
1, . . . x̂

S
` , pw, z1, ..., z`)

xU
1 , ..., x

U
` , x̂

U
1 , . . . , x̂

U
`

xS
1, ..., x

S
` , x̂

S
1, . . . , x̂

S
`

Figure 4: PAKE protocol X-GA-PAKE` from group actions.

By means of these modifications, the protocol X-GA-PAKE` is provably secure for
EGATs. We show that its security can be reduced to the hardness of the computational
problems GA-StCDH and SqInv-GA-StCDH (Theorem 1).
6.1 Description of the Protocol

The setup for X-GA-PAKE` is the same as for GA-PAKE`. The crs = (x0, x1) comprises
two elements of the set X , and the shared password is a bit string (b1, . . . , b`) of length
`.

In the first flow of the protocol the user generates 2 · ` random group elements,
u1, . . . , u` and û1, . . . , û`. Using these elements it computes the set elements xU

i = ui?xbi
and x̂U

i = ûi ? xbi for each i ∈ [`] and sends these to the server.
Simultaneously, the server generates the random group elements s1, . . . , s` and

ŝ1, . . . , ŝ`, which it uses to compute the set elements xS
i = si ? xbi and x̂S

i = ŝi ? xbi for
each i ∈ [`] and sends these to the user.

Upon receiving the set elements from the other party, both the server and the user
compute the following three elements

zi,1 = ui ? x
S
i = si ? x

U
i , zi,2 = ûi ? x

S
i = si ? x̂

U
i , zi,3 = ui ? x̂

S
i = ŝi ? x

U
i ,

for each i ∈ [`]. Finally, these elements are used to compute the session key K. The
protocol is sketched in Figure 4.

6.2 Security of X-GA-PAKE`

We now prove the security of X-GA-PAKE` for EGATs.

Theorem 1 (Security of X-GA-PAKE`). For any adversary A against X-GA-PAKE`
that issues at most qe execute queries and qs send queries and where H is modeled as
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a random oracle, there exist an adversary B1 against GA-StCDH and an adversary B2
against SqInv-GA-StCDH such that

AdvX-GA-PAKE`(A) ≤ AdvGA-StCDH
EGAT (B1) + AdvSqInv-GA-StCDH

EGAT (B2) + qs
|PW|

+ (qs + qe)2

|G|2`
.

Before proving Theorem 1, we will introduce a new computational assumption which is
tailored to the protocol.

Definition 9 (Double Simultaneous GA-StCDH (DSim-GA-StCDH)). On input (x0, x1,
w0, w1) = (g0 ? x̃, g1 ? x̃, h0 ? x̃, h1 ? x̃) ∈ X 4, the DSim-GA-StCDH problem requires to
find a tuple (y, y0, y1, y2, y3) ∈ X 5 such that

(y0, y1, y2, y3) = (g−1
0 · h0 ? y, g

−1
0 · h1 ? y, g

−1
1 · h0 ? y, g

−1
1 · h1 ? y).

For a group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage func-
tion of an adversary A as

AdvDSim-GA-StCDH
XXX (A) := Pr


y0 = GA-CDHx0(w0, y)
y1 = GA-CDHx0(w1, y)
y2 = GA-CDHx1(w0, y)
y3 = GA-CDHx1(w1, y)

∣∣∣∣∣∣∣∣
(g0, g1, h0, h1) $← G4

(x0, x1) = (g0 ? x̃, g1 ? x̃)
(w0, w1) = (h0 ? x̃, h1 ? x̃)

(y, y0, y1, y2, y3)← AO(x0, x1, w0, w1)

 ,
where O = {GA-DDHxj (wi, ·, ·)}i,j∈{0,1}.

Remark 12. Note that DSim-GA-StCDH may be viewed as the doubled version of the
Sim-GA-StCDH problem defined in the appendix (cf. Definition 12). The latter is an
assumption underlying the security of GA-PAKE` and (in the notation of the above
problem) it only requires to find the tuple (y, y0, y2). For a group action with twists, this
admits the trivial solution (y, y0, y2) = (wt0, xt0, xt1). Such a trivial solution is inhibited
by requiring to find y1 and y3 as well.

Lemma 1. In the EGAT setting, the square-inverse GA-StCDH (SqInv-GA-StCDH)
implies the double simultaneous GA-StCDH (DSim-GA-StCDH). In particular,

AdvDSim-GA-StCDH
EGAT (A) ≤ AdvSqInv-GA-StCDH

EGAT (B) .

Proof. Given a challenge x = g?x̃ ∈ X and oracles GA-DDH(x, ·, ·), GA-DDHxt(x, ·, ·)
for the SqInv-GA-StCDH problem, we choose three group elements α, β, γ $← G and call
the adversary for the DSim-GA-StCDH problem on input

(x0, x1, w0, w1) = (xt, α ? x, β ? x, γ ? x̃).

The corresponding decision oracles can be simulated using the oracles provided by
SqInv-GA-StCDH. More precisely, for any z1, z2 ∈ X :

GA-DDHx0(w0, z1, z2) = GA-DDHxt(x, z1, β
−1 ? z2),

GA-DDHx0(w1, z1, z2) = GA-DDH(x, z1, γ
−1 ? z2),

GA-DDHx1(w0, z1, z2) = GA-DDH(x̃, z1, (α · β−1) ? z2),
GA-DDHx0(w1, z1, z2) = GA-DDH(x, zt1, (α−1 · γ) ? zt2).
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For the third oracle note that GA-DDH(x̃, z1, (α · β−1) ? z2) = 1 precisely when
z1 = (α · β−1) ? z2. For the forth oracle, note that GA-DDHx0(w1, z1, z2) = 1 iff
z2 = (α−1 · γ · g−1) ? z1. This implies

zt2 = (α · γ−1 · g) ? zt1 = (α · γ−1) · GA-CDH(x, zt1).

If the adversary is successful, it returns a tuple (y, y0, y1, y2, y3), where

y0 = g(βg) ? y, y1 = g · γ ? y, y2 = α−1 · β ? y, y3 = (αg)−1γ ? y.

Consequently, the tuple (y, y′0, y′1) = (y, β−1 ? y0, α ? y3) solves the SqInv-GA-StCDH
problem.

In the following, we give the full proof of Theorem 1.

Proof of Theorem 1. Let A be an adversary against X-GA-PAKE`. Consider the games
in Figures 5, 8, 9.
Game G0. This is the original game, hence

AdvX-GA-PAKE`(A) ≤ |Pr[G0 ⇒ 1]− 1/2| .

Game G1. In game G1, we raise flag badcoll whenever a server instance computes the
same trace as any other accepted instance (line 60) or a user instance computes the
same trace as any other accepted user instance (line 75). In this case, SendResp or
SendTermInit return ⊥. We do the same if a trace that is computed in an Execute
query collides with one of a previously accepted instance (line 28). Due to the difference
lemma,

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ Pr[badcoll] .

Note that when badcoll is not raised, each instance is unique and has at most one
partner. In order to bound badcoll, recall that the trace of an oracle πtP consists of
(U,S, xU = (xU

1 , ..., x
U
` ), x̂U = (x̂U

1 , ...x̂
U
` ), xS = (xS

1, ..., x
S
` ), x̂S = (x̂S

1, ..., x̂
S
` )), where at

least one of the message pairs (xU, x̂U) or (xS, x̂S) was chosen by the game. Thus, badcoll
can only happen if all those 2 · ` set elements collide with all 2 · ` set elements of another
instance. The probability that this happens for two (fixed) sessions is |G|−2`, hence the
union bound over qe and qs sessions yields

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ Pr[badcoll] ≤
(
qe + qs

2

)
· 1
|G|2`

≤ (qe + qs)2

|G|2`
.

Game G2. In game G2, we make the freshness explicit. To each oracle πtP, we assign an
additional variable πtP.fr which is updated during the game. In particular, all instances
used in execute queries are marked as fresh (line 34).

An instance is fresh if the password was not corrupted yet (lines 63, 80). Otherwise,
it is not fresh (lines 65, 82). For user instances we also check if there exists a fresh
partner (line 78). If A issues a Corrupt query later, the freshness variable will also be
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GAMES G0-G4
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, T ) := (∅, ∅)
03 badcoll := false
04 β $← {0, 1}
05 for (U,S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return Jβ = β′K

Execute(U, t0, S, t1)
09 if πt0U 6= ⊥ or πt1S 6= ⊥
10 return ⊥
11 (b1, ..., b`) := pwUS �G0-G3
12 u := (u1, ..., u`) $← G`
13 û := (û1, ..., û`) $← G`
14 s := (s1, ..., s`) $← G`
15 ŝ := (ŝ1, ..., ŝ`) $← G`
16 xU := (xU

1 , ..., x
U
` ) := (u1 ? xb1 , ..., u` ? xb`) �G0-G3

17 x̂U := (x̂U
1 , ..., x̂

U
` ) := (û1 ? xb1 , ..., û` ? xb`) �G0-G3

18 xS := (xS
1, ..., x

S
`) := (s1 ? xb1 , ..., s` ? xb`) �G0-G3

19 x̂S := (x̂S
1, ..., x̂

S
`) := (ŝ1 ? xb1 , ..., ŝ` ? xb`) �G0-G3

20 for i ∈ [`] : �G0-G3
21 zi := (zi,1, zi,2, zi,3)

:= (ui ? xS
i , ûi ? x

S
i , ui ? x̂

S
i ) �G0-G3

22 z := (z1, . . . , z`) �G0-G3
23 xU := (xU

1 , ..., x
U
` ) := (u1 ? x̃, ..., u` ? x̃) �G4

24 x̂U := (x̂U
1 , ..., x̂

U
` ) := (û1 ? x̃, ..., û` ? x̃) �G4

25 xS := (xS
1, ..., x

S
`) := (s1 ? x̃, ..., s` ? x̃) �G4

26 x̂S := (x̂S
1, ..., x̂

S
`) := (ŝ1 ? x̃, ..., ŝ` ? x̃) �G4

27 if ∃P ∈ U ∪ S, t′ s. t.
πt
′

P .tr = (U,S, xU, x̂U, xS, x̂S) �G1-G4
28 badcoll := true �G1-G4
29 return ⊥ �G1-G4
30 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z) �G0-G2
31 K $← K �G3-G4
32 πt0U := ((u, û), (U, S, xU, x̂U, xS, x̂S),K, true)
33 πt1S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K, true)
34 (πt0U .fr, π

t1
S .fr) := (true, true) �G2-G4

35 return (U, xU, x̂U, S, xS, x̂S)

Reveal(P, t)
36 if πtP.acc 6= true or πtP.test = true
37 return ⊥
38 if ∃P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt

′

P′) = 1
and πt

′

P′ .test = true
39 return ⊥
40 ∀(P′, t′) s. t. πt

′

P′ .tr = πtP.tr �G2-G4

41 πt
′

P′ .fr := false �G2-G4
42 return πtP.K

SendInit(U, t, S)
43 if πtU 6= ⊥
44 return ⊥
45 (b1, ..., b`) := pwUS
46 u := (u1, ..., u`) $← G`
47 û := (û1, ..., û`) $← G`
48 xU := (xU

1 , ..., x
U
` ) := (u1 ? xb1 , ..., u` ? xb`)

49 x̂U := (x̂U
1 , ..., x̂

U
` ) := (û1 ? xb1 , ..., û` ? xb`)

50 πtU := ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
51 πtU.fr := false �G2-G4
52 return (U, xU, x̂U)

SendResp(S, t,U, xU, x̂U)
53 if πtS 6= ⊥
54 return ⊥
55 (b1, ..., b`) := pwUS
56 (s1, ..., s`) $← G`
57 xS := (xS

1, ..., x
S
`) := (s1 ? xb1 , ..., s` ? xb`)

58 x̂S := (x̂S
1, ..., x̂

S
`) := (ŝ1 ? xb1 , ..., ŝ` ? xb`)

59 if ∃P ∈ U ∪ S, t′ s. t.
πt
′

P .tr = (U, S, xU, x̂U, xS, x̂S) �G1-G4
60 badcoll := true �G1-G4
61 return ⊥ �G1-G4
62 if (U,S) /∈ C �G2-G4
63 πtS.fr := true �G2-G4
64 else �G2-G4
65 πtS.fr := false �G2-G4
66 for i ∈ [`] :
67 zi := (zi,1, zi,2, zi,3)

:= (si ? xU
i , s ? x̂

U
i , ŝi ? x

U
i )

68 z := (z1, ..., z`)
69 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
70 πtS := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K, true)
71 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)
72 if πtU 6= ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
73 return ⊥
74 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U,S, xU, x̂U, xS, x̂S) �G1-G4

75 badcoll := true �G1-G4
76 return ⊥ �G1-G4

77 if ∃t′ s. t. πt
′

S .tr = (U, S, xU, x̂U, xS, x̂S)
and πt

′
S .fr = true �G2-G4

78 πtU.fr := true �G2-G4
79 else if (U, S) /∈ C �G2-G4
80 πtU.fr := true �G2-G4
81 else �G2-G4
82 πtU.fr := false �G2-G4
83 for i ∈ [`] :
84 zi := (zi,1, zi,2, zi,3)
85 := (ui ? xS

i , ûi ? x
S
i , ui ? x̂

S
i )

86 z := (z1, ..., z`)
87 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
88 πtU := ((u, û), (U,S, xU, x̂UxS, x̂S),K, true)
89 return true

Figure 5: Games G0-G4 for the proof of Theorem 1. A has access to oracles
O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,
H}, where oracles Test, Corrupt and H are defined in Figure 6.
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Test(P, t)
00 if Fresh(πtP) = false return ⊥ �G0-G1
01 if πtP.fr = false return ⊥ �G2-G4
02 K∗0 := Reveal(P, t)
03 if K∗0 = ⊥ return ⊥
04 K∗1

$← K
05 πtP.test := true
06 return K∗β

H(U, S, xU, x̂U, xS, x̂S, pw, z)
07 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥
08 return K
09 T [U, S, xU, x̂U, xS, x̂S, pw, Z] $← K
10 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

Corrupt(U, S)
11 if (U,S) ∈ C return ⊥
12 for P ∈ {U,S}
13 if ∃t s. t. πtP.test = true

and @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt
′

P′) = 1
14 return ⊥
15 ∀πtP : if @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt

′

P′) = 1 �G2-G4
16 πtP.fr = false �G2-G4
17 C := C ∪ {(U, S)}
18 return pwUS

Figure 6: Oracles Test, Corrupt and H for games G0-G4 in Figure 5.

updated (line 16). When the session key of an instance is revealed, this instance and its
potential partner instance are marked as not fresh (line 41). On a query to test, the
game then only checks the freshness variable (line 01). These are only a conceptual
changes, hence

Pr[G2 ⇒ 1] = Pr[G1 ⇒ 1] .

Game G3. In game G3, we choose random keys for instances queried to Execute. We
construct adversary B1 against GA-StCDH in Figure 7 and show that

|Pr[G3 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ AdvGA-StCDH
EGAT (B1) .

Adversary B1 inputs a GA-StCDH challenge (x, y) = (g ? x̃, h ? x̃) and has access to a
decision oracle GA-DDH(x, ·, ·). First, it generates the crs elements (x0, x1) as in game
G3 and then runs adversary A. Queries to Execute are simulated as follows: It chooses
random group elements ui, ûi and si, ŝi for user and server instances and i ∈ [`], but
instead of using (x0, x1) to compute the set elements, B1 uses x for the user instance
and y for the server instance, independent of the password bits bi (lines 30-33). We can
rewrite this as

xU
i = ui ? x = (ui · g) ? x̃ = (ui · g · gbi · g−1

bi
) ? x̃ = (ui · g · g−1

bi
)︸ ︷︷ ︸

u′
i

?xbi ,

where u′i is the group element that the user actually needs in order to compute the
session key. In the same way, û′i = ûi · g · g−1

bi
, s′i = si · h · g−1

bi
and ŝ′i = ŝi · h · g−1

bi
. Note

that zi = (zi,1, zi,2, zi,3) is implicitly set to

zi,1 = (u′i · s′i) ? xbi = ui · g · si · h · g−1
bi

? x̃ ,

zi,2 = (û′i · s′i) ? xbi = ûi · g · si · h · g−1
bi

? x̃ ,

zi,3 = (u′i · ŝ′i) ? xbi = ui · g · ŝi · h · g−1
bi

? x̃ .

Before choosing a random session key, we check if there has been a query to the random
oracle H that matches the session key (lines 37-45). We iterate over the entries in T ,
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BGA-DDH(x,·,·)
1 (x, y)

00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, T, Te) := (∅, ∅, ∅)
03 badcoll := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 Stop.

H(U,S, xU, xS, pw, z)
09 if ∃(u, û, s, ŝ)

s. t. (U, S, xU, x̂U, xS, x̂S, pw, u, û, s, ŝ) ∈ Te
10 (b1, ..., b`) := pw
11 for i ∈ [`]
12 (zi,1, zi,2, zi,3) := zi
13 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi,1) = 1

14 Stop with (u−1
i · s

−1
i · gbi) ? zi,1

15 if GA-DDH(x, xS
i , (û−1

i · gbi) ? zi,2) = 1
16 Stop with (û−1

i · s
−1
i · gbi) ? zi,2

17 if GA-DDH(x, xS
i , (u−1

i · gbi) ? zi,3) = 1
18 Stop with (u−1

i · ŝ
−1
i · gbi) ? zi,3

19 if T [U,S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥
20 return K
21 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
22 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

Execute(U, t0,S, t1)
23 if πt0U 6= ⊥ or πt1S 6= ⊥
24 return ⊥
25 (b1, ..., b`) := pwUS
26 u := (u1, ..., u`) $← G`
27 û := (û1, ..., û`) $← G`
28 s := (s1, ..., s`) $← G`
29 ŝ := (ŝ1, ..., ŝ`) $← G`
30 xU := (xU

1 , ..., x
U
` ) := (u1 ? x, ..., u` ? x)

31 x̂U := (x̂U
1 , ..., x̂

U
` ) := (û1 ? x, ..., û` ? x)

32 xS := (xS
1, ..., x

S
`) := (s1 ? y, ..., s` ? y)

33 x̂S := (x̂S
1, ..., x̂

S
`) := (ŝ1 ? y, ..., ŝ` ? y)

34 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, x̂U, xS, x̂S)
35 badcoll := true
36 return ⊥
37 ∀z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T
38 for i ∈ [`]
39 (zi,1, zi,2, zi,3) := zi
40 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi,1) = 1

41 Stop with (u−1
i · s

−1
i · gbi) ? zi,1

42 if GA-DDH(x, xS
i , (û−1

i · gbi) ? zi,2) = 1
43 Stop with (û−1

i · s
−1
i · gbi) ? zi,2

44 if GA-DDH(x, xS
i , (u−1

i · gbi) ? zi,3) = 1
45 Stop with (u−1

i · ŝ
−1
i · gbi) ? zi,3

46 Te := Te ∪ {U,S, xU, x̂U, xS, x̂S, pwUS, u, û, s, ŝ}
47 K $← K
48 πt0U := ((u, û), (U, S, xU, x̂U, xS, x̂S),K, true)
49 πt1S := ((s, ŝ), (U,S, xU, x̂U, xS, x̂S),K, true)
50 (πt0U .fr, π

t1
S .fr) := (true, true)

51 return (U, xU, x̂U, S, xS, x̂S)

Figure 7: Adversary B1 against GA-StCDH for the proof of Theorem 1. A has access to
oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,
Test,H}. Oracles SendInit, SendResp, SendTermInit, Reveal, Corrupt and
Test are defined as in G2. Lines written in blue show how B1 simulates the game.

where U, S, xU, x̂U, xS, x̂S and pwUS match, and check if one of the entries in z is
correct. Note that we can use the following equivalences:

GA-CDHxbi (x
U
i , x

S
i ) = zi,1 ⇔ GA-CDH(x, xS

i ) = (u−1
i · gbi) ? zi,1,

GA-CDHxbi (x̂
U
i , x

S
i ) = zi,2 ⇔ GA-CDH(x, xS

i ) = (û−1
i · gbi) ? zi,2,

GA-CDHxbi (x
U
i , x̂

S
i ) = zi,3 ⇔ GA-CDH(x, x̂S

i ) = (u−1
i · gbi) ? zi,3,

which allows us to use the restricted decision oracleGA-DDH(x, ·, ·). If one of zi,1, zi,2, zi,3
is correct, B1 aborts and outputs the solution (g · h) ? x̃ which is respectively given by
(u−1
i · s

−1
i · gbi) ? zi,1, (û−1

i · s
−1
i · gbi) ? zi,2 or (u−1

i · ŝ
−1
i · gbi) ? zi,3.

Otherwise, we store the values ui, ûi and si, ŝi in list Te together with the trace and
the password (line 46) and choose a session key uniformly at random. We need list Te to
identify relevant queries to H. In particular, if the trace and password appear in a query,
we retrieve the values ui, ûi and si, ŝi to check whether the provided zi are correct. We
do this in the same way as described above using the decision oracle (lines 09-18). If the
oracle returns 1 for any zi,j , B1 aborts and outputs the solution for (g · h) ? x̃ which is
respectively given by (u−1

i · s
−1
i · gbi) ? zi,1, (û−1

i · s
−1
i · gbi) ? zi,2 or (u−1

i · ŝ
−1
i · gbi) ? zi,3.
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Game G4. In game G4, we remove the password from execute queries. In particular, we
do not compute xU, x̂U, xS, x̂S to the basis xbi , but simply use x̃ . Note that the values
have the same distribution as in the previous game. Also, the group elements u, û, s
and ŝ are not used to to derive the key. Hence, this change is not observable by A and

Pr[G4 ⇒ 1] = Pr[G3 ⇒ 1] .

Game G5. G5 is given in Figure 8. In this game we want to replace the session keys by
random for all fresh instances in oracles SendResp and SendTermInit (lines 61, 82).
Therefore, we introduce an additional independent random oracle Ts which maps only
the trace of an instance to a key (lines 62, 83). We keep partner instances consistent,
i.e., in case the adversary queries SendTermInit for a user instance and there exists a
fresh partner instance, then we retrieve the corresponding key from Ts and also assign
it to this instance (line 77). For all instances that are not fresh, we simply compute the
correct key using random oracle H (lines 65-68, 86-89). If a session is fresh and there is
an inconsistency between T and Ts, we raise flag bad. This happens in the following
cases:
– a server instance is about to compute the session key, the password was not corrupted,

but there already exists an entry in T with the correct password and z (lines 59-60).
– a user instance is about to compute the session key, there exists no partner instance
and the password was not corrupted, but there already exists an entry in T with
the correct password and z (lines 80-81).

– the random oracle is queried on some trace that appears in Ts together with the
correct password and z (lines 35-46). At this point, we also check if the password
was corrupted in the meantime and if this is the case and the adversary issues
the correct query, we simply output the key stored in Ts (line 45) as this instance
cannot be tested. This case corresponds to perfect forward secrecy which we cover
in Appendix F.2.

When bad is not raised, there is no difference between G4 and G5. Hence,

|Pr[G5 ⇒ 1]− Pr[G4 ⇒ 1]| ≤ Pr[G5 ⇒ bad] .

Game G6. G6 is given in Figure 9. In this game we remove the password from send
queries and generate passwords as late as possible, that is either when the adversary
issues a corrupt query (line 21) or after it has stopped with output β′ (line 07). In
SendInit and SendResp we still choose group elements ui, ûi, si and ŝi uniformly at
random, but now compute xU

i , x̂
U
i , x

S
i and x̂S

i using the origin element (lines 26-27 and
50-51). Thus, depending on which password is chosen afterwards, we implicitly set

xU
i = ui · x̃ = (ui · g−1

0 ) ? x0 = (ui · g−1
1 ) ? x1

and analogously for x̂U
i , x

S
i and x̂S

i . For all instances that are not fresh, we have to
compute the real session key using zi = (si · g−1

bi
? xU

i , si · g
−1
bi

? x̂U
i , ŝi · g

−1
bi

? xU
i ) (line

69) or zi = (ui · g−1
bi

? xS
i , ûi · g

−1
bi

? xS
i , ui · g

−1
bi

? x̂S
i ) (line 95). Note that the password is

already defined for these instances.
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GAME G5
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, T, Ts) := (∅, ∅, ∅)
03 bad := false
04 β $← {0, 1}
05 for (U,S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return Jβ = β′K

Execute(U, t0, S, t1)
09 if πt0U 6= ⊥ or πt1S 6= ⊥ return ⊥
10 u := (u1, ..., u`) $← G`
11 û := (û1, ..., û`) $← G`
12 s := (s1, ..., s`) $← G`
13 ŝ := (ŝ1, ..., ŝ`) $← G`
14 xU := (xU

1 , ..., x
U
` ) := (u1 ? x̃, ..., u` ? x̃)

15 x̂U := (x̂U
1 , ..., x̂

U
` ) := (û1 ? x̃, ..., û` ? x̃)

16 xS := (xS
1, ..., x

S
`) := (s1 ? x̃, ..., s` ? x̃)

17 x̂S := (x̂S
1, ..., x̂

S
`) := (ŝ1 ? x̃, ..., ŝ` ? x̃)

18 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, x̂U, xS, x̂S)
19 return ⊥
20 K $← K
21 πt0U := ((u, û), (U, S, xU, x̂U, xS, x̂S),K, true)
22 πt1S := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K, true)
23 (πt0U .fr, π

t1
S .fr) := (true, true)

24 return (U, xU, x̂U, S, xS, x̂S)

SendInit(U, t, S)
25 if πtU 6= ⊥ return ⊥
26 (b1, ..., b`) := pwUS
27 u := (u1, ..., u`) $← G`
28 û := (û1, ..., û`) $← G`
29 xU := (xU

1 , ..., x
U
` ) := (u1 ? xb1 , ..., u` ? xb`)

30 x̂U := (x̂U
1 , ..., x̂

U
` ) := (û1 ? xb1 , ..., û` ? xb`)

31 πtU := ((u, û), (U,S, xU, x̂U,⊥,⊥),⊥,⊥)
32 πtU.fr := false
33 return (U, xU, x̂U)

H(U, S, xU, x̂U, xS, x̂S, pw, z)
34 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥ return K
35 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts and pw = pwUS
36 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û),K)
37 for i ∈ [`]
38 z′i := (ui ? xS

i , ûi ? x
S
i , ui ? x̂

S
i )

39 z′ := (z′1, ..., z′`)
40 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ),K)
41 for i ∈ [`]
42 z′i := (si ? xU

i , si ? x̂
U
i , ŝi ? x

U
i )

43 z′ := (z′1, ..., z′`)
44 if z = z′

45 if (U, S) ∈ C: return K
46 if (U, S) /∈ C: bad := true
47 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
48 return T [U,S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU, x̂U)
49 if πtS 6= ⊥ return ⊥
50 (b1, ..., b`) := pwUS
51 s := (s1, ..., s`) $← G`
52 ŝ := (ŝ1, ..., ŝ`) $← G`
53 xS := (xS

1, ..., x
S
`) := (s1 ? xb1 , ..., s` ? xb`)

54 x̂S := (x̂S
1, ..., x̂

S
`) := (ŝ1 ? xb1 , ..., ŝ` ? xb`)

55 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U,S, xU, x̂U, xS, x̂S)
56 return ⊥
57 if (U, S) /∈ C
58 πtS.fr := true
59 if ∃z s. t. (U,S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and zi := (si ? xU
i , si ? x̂

U
i , ŝi ? x

U
i ) ∀i ∈ [`]

60 bad := true
61 K $← K
62 Ts[U, S, xU, x̂U, xS, x̂S] := (S, (s, ŝ),K)
63 else
64 πtS.fr := false
65 for i ∈ [`]
66 zi := (si ? xU

i , si ? x̂
U
i , ŝi ? x

U
i )

67 z := (z1, ..., z`)
68 K := H(U, S, xU, x̂U, xS, x̂S, pwUS, z)
69 πtS := ((s, ŝ), (U,S, xU, x̂U, xS, x̂S),K, true)
70 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)
71 if πtU 6= ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
72 return ⊥
73 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U, S, xU, x̂U, xS, x̂S)

74 return ⊥
75 if ∃t′ s. t. πt

′
S .tr = (U, S, xU, x̂U, xS, x̂S)

and πt
′

S .fr = true
76 πtU.fr := true
77 (S, (s, ŝ),K) := Ts[U, S, xU, x̂U, xS, x̂S]
78 else if (U,S) /∈ C
79 πtU.fr := true
80 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and zi := (ui ? xS
i , ûi ? x

S
i , ui ? x̂

S
i ) ∀i ∈ [`]

81 bad := true
82 K $← K
83 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û),K)
84 else
85 πtU.fr := false
86 for i ∈ [`]
87 zi := (ui ? xS

i , ûi ? x
S
i , ui ? x̂

S
i )

88 z := (z1, ..., z`)
89 K := H(U,S, xU, x̂U, xS, x̂S, pwUS, z)
90 πtU := ((u, û), (U, S, xU, x̂U, xS, x̂S),K, true)
91 return true

Figure 8: Game G5 for the proof of Theorem 1. A has access to oracles O := {Execute,
SendInit, SendResp, SendTermInit, Reveal, Corrupt, Test, H}. Reveal,
Test and Corrupt are defined as in Figure 5. Differences to G4 are highlighted
in blue.
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GAME G6
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, T, Ts, Tbad) := (∅, ∅, ∅, ∅)
03 (badguess,badpw) := (false, false)
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 for (U, S) ∈ U × S \ C
07 pwUS

$← PW
08 if ∃pw, pw′, (U,S, xU, x̂U, xS, x̂S, z, z′)

s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ Tbad
and (U, S, xU, x̂U, xS, x̂S, pw′, z′) ∈ Tbad

09 badpw := true
10 else
11 if ∃U,S, xU, x̂U, xS, x̂S, z

s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ Tbad
12 badguess := true
13 return Jβ = β′K

Corrupt(U, S)
14 if (U,S) ∈ C return ⊥
15 for P ∈ {U,S}
16 if ∃t s. t. πtP.test = true

and @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt
′

P′) = 1
17 return ⊥
18 ∀πtP : if @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt

′

P′) = 1
19 πtP.fr = false
20 C := C ∪ {(U,S)}
21 pwUS

$← PW
22 return pwUS

SendInit(U, t, S)
23 if πtU 6= ⊥ return ⊥
24 u := (u1, ..., u`) $← G`
25 û := (û1, ..., û`) $← G`
26 xU := (xU

1 , ..., x
U
` ) := (u1 ? x̃, ..., u` ? x̃)

27 x̂U := (x̂U
1 , ..., x̂

U
` ) := (û1 ? x̃, ..., û` ? x̃)

28 πtU := ((u, û), (U,S, xU, x̂U,⊥,⊥),⊥,⊥)
29 πtU.fr := ⊥
30 return (U, xU, x̂U)

H(U, S, xU, x̂U, xS, x̂S, pw, z)
31 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥ return K
32 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts
33 (b1, ..., b`) := pw
34 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û),K)
35 for i ∈ [`]
36 z′i := (ui · g−1

bi
? xS

i , ûi · g−1
bi

? xS
i , ui · g−1

bi
? x̂S

i )
37 z′ := (z′1, ..., z′`)
38 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ),K)
39 for i ∈ [`]
40 z′i := (si · g−1

bi
? xU

i , si · g−1
bi

? x̂U
i , ŝi · g−1

bi
? xU

i )
41 z′ := (z′1, ..., z′`)
42 if z = z′

43 if (U, S) ∈ C and pw = pwUS: return K
44 if (U, S) /∈ C: Tbad := Tbad ∪ {U, S, xU, x̂U, xS, x̂S, pw, z}
45 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
46 return T [U,S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU, x̂U)
47 if πtS 6= ⊥ return ⊥
48 s := (s1, ..., s`) $← G`
49 ŝ := (ŝ1, ..., ŝ`) $← G`
50 xS := (xS

1, ..., x
S
`) := (s1 ? x̃, ..., s` ? x̃)

51 x̂S := (x̂S
1, ..., x̂

S
`) := (ŝ1 ? x̃, ..., ŝ` ? x̃)

52 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, x̂U, xS, x̂S)
53 return ⊥
54 if (U,S) /∈ C
55 πtS.fr := true
56 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
57 (b1, ..., b`) := pw
58 for i ∈ [`]
59 z′i := (si · g−1

bi
? xU

i , si · g−1
bi

? x̂U
i , ŝi · g−1

bi
? xU

i )
60 z′ := (z′1, ..., z′`)
61 if z = z′

62 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
63 K $← K
64 Ts[U, S, xU, x̂U, xS, x̂S] := (S, (s, ŝ),K)
65 else
66 πtS.fr := false
67 (b1, ..., b`) := pwUS
68 for i ∈ [`]
69 zi := (si · g−1

bi
? xU

i , si · g−1
bi

? x̂U
i , ŝi · g−1

bi
? xU

i )
70 z := (z1, ..., z`)
71 K := H(U,S, xU, x̂U, xS, x̂S, pwUS, z)
72 πtS := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K, true)
73 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)
74 if πtU 6= ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥) return ⊥
75 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U,S, xU, x̂U, xS, x̂S)

76 return ⊥
77 if ∃t′ s. t. πt

′
S .tr = (U, S, xU, x̂U, xS, x̂S)

and πt
′

S .fr = true
78 πtU.fr := true
79 (S, (s, ŝ),K) := Ts[U, S, xU, x̂U, xS, x̂S]
80 else if (U, S) /∈ C
81 πtU.fr := true
82 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
83 (b1, ..., b`) := pw
84 for i ∈ [`]
85 z′i := (ui · g−1

bi
? xS

i , ûi · g−1
bi

? xS
i , ui · g−1

bi
? x̂S

i )
86 z′ := (z′1, ..., z′`)
87 if z = z′

88 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
89 K $← K
90 Ts[U,S, xU, x̂U, xS, x̂S] := (U, (u, û),K)
91 else
92 πtU.fr := false
93 (b1, ..., b`) := pwUS
94 for i ∈ [`]
95 zi := (ui · g−1

bi
? xS

i , ûi · g−1
bi

? xS
i , ui · g−1

bi
? x̂S

i )
96 z := (z1, ..., z`)
97 K := H(U,S, xU, x̂U, xS, x̂S, pwUS, z)
98 πtU := ((u1, ..., u`), (U,S, xU, x̂U, xS, x̂S),K, true)
99 return true

Figure 9: Game G6 for the proof of Theorem 1. A has access to oracles O :=
{Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}. Or-
acles Reveal and Test are defined as in game G4 in Figure 5. Oracle Execute is
defined as in Figure 8. Differences to G5 are highlighted in blue.
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Recall that event bad in game G5 is raised whenever there is an inconsistency in
the random oracle queries and the keys of fresh instances. In this game, we split event
bad into two different events:
– badpw captures the event that there exists more than one valid entry in T for the
same trace of a fresh instance, but different passwords.

– badguess happens only if badpw does not happen and is raised if there exists a valid
entry in T for the trace of a fresh instance and the correct password, where the
password was not corrupted when the query to H was made.

To identify the different events, we introduce a new set Tbad. For all fresh instances in
SendResp and SendTermInit, we now iterate over all entries in T that contain the
corresponding trace. We check if the given password and z are valid for this trace by
computing the real values z′ in the same way as for non-fresh instances. If z = z′, we
add this entry to the set Tbad (lines 56-62, 82-88). We essentially do the same when the
random oracle H is queried on a trace that appears in Ts. Here, the adversary specifies
the password and we check if z is valid for that password using the ui, ûi stored in Ts
for user instances and si, ŝi for server instances. If z is valid and the instance is still
fresh, we add the query to Tbad (lines 32-44). In case the password was corrupted in
the meantime, we output the key stored in Ts as introduced in the previous game.

After the adversary terminates, we check Tbad whether event badpw (line 09) or
event badguess (line 12) occurred. We will bound these events below. First note that
whenever bad is raised in G5, then either flag badguess or badpw is raised in G6, thus

Pr[G5 ⇒ bad] ≤ Pr[G6 ⇒ badpw] + Pr[G6 ⇒ badguess] .
Finally, we bound the probabilities of the two events. We start with badpw. In Figure 10,
we construct adversary B2 against DSim-GA-StCDH that simulates G6.

We show that when badpw occurs, then B2 can solve DSim-GA-StCDH. Hence,

Pr[G6 ⇒ badpw] ≤ AdvDSim-GA-StCDH
EGA (B2) .

Adversary B2 inputs (x0, x1, w0, w1), where x0 = g0 ? x̃, x1 = g1 ? x̃, w0 = h0 ? x̃ and
w1 = h1 ? x̃ for group elements g0, g1, h0, h1 ∈ G chosen uniformly at random. Adversary
B2 also has access to decision oracles GA-DDHxj (wi, ·, ·) for (i, j) ∈ {0, 1}2. It runs
adversary A on (x0, x1). Queries to SendInit are simulated as follows: B2 chooses
group elements ui and ûi uniformly at random and sets

xU
i = ui ? w0 = (ui · h0 · g−1

0 ) ? x0 = (ui · h0 · g−1
1 ) ? x1 ,

x̂U
i = ûi ? w1 = (ûi · h1 · g−1

0 ) ? x0 = (ûi · h1 · g−1
1 ) ? x1 .

The simulation of xS
i and x̂S

i in SendResp is done in the same way, choosing random
si and ŝi. In case the server instance is fresh, we must check if there already exists an
entry in T that causes an inconsistency. As in G6, we iterate over all pw, z, in T that
contain the trace of this instance. In particular, we must check whether

zi,1 = GA-CDHxbi (x
U
i , x

S
i ) ⇔ GA-CDHxbi (w0, x

U
i ) = s−1

i ? zi,1 ,

zi,2 = GA-CDHxbi (x̂
U
i , x

S
i ) ⇔ GA-CDHxbi (w0, x̂

U
i ) = s−1

i ? zi,2 ,

zi,3 = GA-CDHxbi (x
U
i , x̂

S
i ) ⇔ GA-CDHxbi (w1, x

U
i ) = ŝ−1

i ? zi,3 ,
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B
{GA-DDHxj (wi,·,·)}i,j∈{0,1}
2 (x0, x1, w0, w1)

00 (C, T, Ts, Tbad) := (∅, ∅, ∅, ∅)
01 β $← {0, 1}
02 β′ ← AO(x0, x1)
03 for (U, S) ∈ U × S \ C
04 pwUS

$← PW
05 if ∃pw, pw′, (U, S, xU, x̂U, xS, x̂S, z, z′)

s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ Tbad
and (U, S, xU, x̂U, xS, x̂S, pw′, z′) ∈ Tbad

06 (b1, ..., b`) := pw
07 (b′1, ..., b′`) := pw′
08 Find first index i such that bi 6= b′i
09 W.l.o.g. let bi = 0, b′i = 1
10 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û),K)
11 Stop with (xS

i , u
−1
i ? zi,1, û

−1
i ? zi,2, u

−1
i ? z′i,1, û

−1
i ? z′i,2)

12 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ),K)
13 Stop with (xU

i , s
−1
i ? zi,1, ŝ

−1
i ? zi,3, s

−1
i ? z′i,1, ŝ

−1
i ? z′i,3)

SendInit(U, t, S)
14 if πtU 6= ⊥ return ⊥
15 u := u1, ..., u`) $← G`
16 û := (û1, ..., û`) $← G`
17 xU := (xU

1 , ..., x
U
` ) := (u1 ? w0, ..., u` ? w0)

18 x̂U := (x̂U
1 , ..., x̂

U
` ) := (û1 ? w1, ..., û` ? w1)

19 πtU := ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
20 return (U, xU, x̂U)

H(U, S, xU, x̂U, xS, x̂S, pw, z)
21 if T [U, S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥ return K
22 if (U,S, xU, x̂U, xS, x̂S) ∈ Ts
23 (b1, ..., b`) := pw
24 if Ts[U,S, xU, x̂U, xS, x̂S] = (U, (u, û),K)
25 if GA-DDHxbi

(w0, x
S
i , u
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w1, x

S
i , û
−1
i ? zi,2) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w0, x̂

S
i , u
−1
i ? zi,3) = 1 ∀i ∈ [`]

26 if (U,S) /∈ C
27 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
28 if (U,S) ∈ C and pw = pwUS: return K
29 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ),K)
30 if GA-DDHxbi

(w0, x
U
i , s
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w0, x̂

U
i , s
−1
i ? zi,2) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w1, x

U
i , ŝ
−1
i ? zi,3) = 1 ∀i ∈ [`]

31 if (U, S) /∈ C
32 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
33 if (U, S) ∈ C and pw = pwUS: return K
34 if ∃(u, û) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (u, û)) ∈ T
35 (b1, ..., b`) := pw
36 if GA-DDHxbi

(w0, x
S
i , u
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w1, x

S
i , û
−1
i ? zi,2) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w0, x

S
i , u
−1
i ? zi,3) = 1 ∀i ∈ [`]

37 return T [U, S, xU, x̂U, xS, x̂S, pw, (u, û)]
38 else if ∃(s, ŝ) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ) ∈ T
39 (b1, ..., b`) := pw
40 if GA-DDHxbi

(w0, x
U
i , s
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w0, x̂

U
i , s
−1
i ? zi,2) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w1, x

U
i , ŝ
−1
i ? zi,3) = 1 ∀i ∈ [`]

41 return T [U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ)]
42 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
43 return T [U, S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU)
44 if πtS 6= ⊥ return ⊥
45 s := (s1, ..., s`) $← G`
46 ŝ := (ŝ1, ..., ŝ`) $← G`
47 xS := (xS

1, ..., x
S
`) := (s1 ? w0, ..., s` ? w0)

48 x̂S := (x̂S
1, ..., x̂

S
`) := (ŝ1 ? w1, ..., ŝ` ? w1)

49 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U,S, xU, x̂U, xS, x̂S)
50 return ⊥
51 if (U, S) /∈ C
52 πtS.fr := true
53 ∀pw, z s. t. (U, S, xU, x̂U, xS, x̂S, pw, z) ∈ T
54 (b1, ..., b`) := pw
55 if GA-DDHxbi

(w0, x
U
i , s
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w0, x̂

U
i , s
−1
i ? zi,2) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w1, x

U
i , ŝ
−1
i ? zi,3) = 1 ∀i ∈ [`]

56 Tbad := Tbad ∪ {(U, S, xU, x̂U, xS, x̂S, pw, z)}
57 K $← K
58 Ts[U, S, xU, x̂U, xS, x̂S] := (S, (s, ŝ),K)
59 else
60 πtS.fr := false
61 (b1, ..., b`) := pwUS
62 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and GA-DDHxbi
(w0, x

U
i , s
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w0, x̂

U
i , s
−1
i ? zi,2) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w1, x

U
i , ŝ
−1
i ? zi,3) = 1 ∀i ∈ [`]

63 K := T [U,S, xU, x̂U, xS, x̂S, pwUS, z]
64 else
65 K $← K
66 T [U,S, xU, x̂U, xS, x̂S, pwUS, (s, ŝ)] := K
67 πtS := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K, true)
68 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)
69 if πtU 6= ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥) return ⊥
70 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U, S, xU, x̂U, xS, x̂S) return ⊥

71 if ∃t′ s. t. πt
′

S .tr = (U, S, xU, x̂U, xS, x̂S) and πt
′

S .fr = true
72 πtU.fr := true
73 (S, (s, ŝ),K) := Ts[U, S, xU, x̂U, xS, x̂S]
74 else if (U,S) /∈ C
75 πtU.fr := true
76 ∀pw, z s. t. (U,S, xU, x̂U, xS, x̂S, pw, z) ∈ T
77 (b1, ..., b`) := pw
78 if GA-DDHxbi

(w0, x
S
i , u
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w1, x

S
i , û
−1
i ? zi,2) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w0, x̂

S
i , u
−1
i ? zi,3) = 1 ∀i ∈ [`]

79 Tbad := Tbad ∪ {(U,S, xU, x̂U, xS, x̂S, pw, z)}
80 K $← K
81 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û),K)
82 else
83 πtS.fr := false
84 (b1, ..., b`) := pwUS
85 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and GA-DDHxbi
(w0, x

S
i , u
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w1, x

S
i , û
−1
i ? zi,2) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w0, x̂

S
i , u
−1
i ? zi,3) = 1 ∀i ∈ [`]

86 K := T [U, S, xU, x̂U, xS, x̂S, pwUS, z]
87 else
88 K $← K
89 T [U, S, xU, x̂U, xS, x̂S, pwUS, (u, û)] := K
90 πtU := ((u, û), (U, S, xU, x̂U, xS, x̂S),K, true)
91 return true

Figure 10: Adversary B2 against DSim-GA-StCDH for the proof of Theorem 1. A has
access to oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,
Corrupt,Test,H}. Oracles Execute, Reveal, Corrupt and Test are defined as
in G6. Lines written in blue show how B2 simulates the game.
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which can be done with the decision oracles GA-DDHxbi
(wj , ·, ·). If all zi are valid,

then we add this entry to Tbad (lines 53-56).
If the instance is not fresh, then we have to compute the correct key. We check list

T for a valid entry z as explained above and if it exists, we assign this value to the
session key (line 63). Otherwise, we choose a random key and add a special entry to
T , which instead of z contains the secret group elements si and ŝi (line 66) so that we
can patch the random oracle later. SendTermInit is simulated analogously, using the
secret group elements ui and ûi.

Now we look at the random oracle queries. If the trace is contained in set Ts which
means the corresponding instance was fresh when the send query was issued, we check
if z is valid using the GA-DDH oracle. We do this as described above, depending on
whether it is a user or a server instance (lines 24, 29). In case z is valid, we first check
if the instance is still fresh (i.e., the password was not corrupted in the meantime) and
if this is the case, we add the query to Tbad (lines 27, 32). Otherwise, if the password
was corrupted and is specified in the query, we return the session key stored in Ts (lines
28, 33).

Next, we check if the query matches a special entry in T that was added in SendResp
or SendTermInit for a non-fresh instance, which means we have to output the same
key that was chosen before. Again, we can use the GA-DDH oracle and differentiate
between user and server instances (lines 34-41).

After A terminates with output β′, B2 chooses the passwords which have not been
generated in a Corrupt query yet. If badpw occurred (lines 05-13), then there must
be two entries in Tbad for the same trace and different passwords pw 6= pw′ along with
values z and z′. Let i be the first index where the two passwords differ, i.e., bi 6= b′i.
Without loss of generality assume that bi = 0 and b′i = 1, otherwise swap pw, z and
pw′, z′. If the entries in Tbad are those of a user instance, we retrieve the secret group
elements u,ûi from Ts.

Recall that the DSim-GA-StCDH problem requires to compute the four values
y0 = GA-CDHx0(w0, y), y1 = GA-CDHx0(w1, y), y2 = GA-CDHx1(w0, y) and y3 =
GA-CDHx1(w1, y), where y can be chosen by the adversary. B2 sets y = xS

i , and outputs
y and

y0 = u−1
i ? zi,1 = GA-CDHx0(u−1

i ? xU
i , x

S
i ) = GA-CDHx0(w0, x

S
i ) ,

y1 = û−1
i ? zi,2 = GA-CDHx0(û−1

i ? x̂U
i , x

S
i ) = GA-CDHx0(w1, x

S
i ) ,

y2 = u−1
i ? z′i,1 = GA-CDHx1(u−1

i ? xU
i , x

S
i ) = GA-CDHx1(w0, x

S
i ) ,

y3 = û−1
i ? z′i,2 = GA-CDHx1(û−1

i ? x̂U
i , x

S
i ) = GA-CDHx1(w1, x

S
i ) .

If the instance is a server instance, B2 outputs (y, y0, y1, y2, y3) = (xU
i , s
−1
i ? zi,1, ŝ

−1
i ?

zi,3, s
−1
i ? z′i,1, ŝ

−1
i ? z′i,3). This concludes the analysis of badpw.

Next, we analyze event badguess. Recall that badguess happens only if badpw does not
happen. Hence, for each instance there is at most one entry in Tbad and the size of Tbad
is at most qs. As all entries were added before the corresponding password was sampled,
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the probability is bounded by

Pr[G6 ⇒ badguess] ≤
qs
|PW|

.

Finally, note that if none of the bad events happens in G6, all session keys output
by Test are uniformly random and the adversary can only guess β. Hence, Pr[G6 ⇒
1] = 1

2 . Collecting the probabilities and using Equation Lemma 1 yields the bound in
Theorem 1.

7 Com-GA-PAKE`: Three-Round PAKE from Group
Actions

In this section we present a second modification of GA-PAKE`, which can be securely
instantiated with an EGAT. The protocol Com-GA-PAKE` extends GA-PAKE` by a
commitment that has to be sent before sending the actual messages. In the first round,
the server sends a commitment on those set elements it will send in the next round,
thus ensuring that the server cannot choose the set elements depending on the message
it receives from the user. This is the crucial step in the attack against GA-PAKE`. In
the second round, the user sends its message to the server and only after receiving that
message, the servers sends its message to the user. While this protocol adds two rounds
to the original protocol, the total computational cost is lower than for X-GA-PAKE`.

7.1 Description of the Protocol

The setup for Com-GA-PAKE` is the same as for GA-PAKE`, where the crs = (x0, x1)
comprises two set elements, and the shared password is a bit string (b1, . . . , b`) of length
`.

The difference to GA-PAKE` is that before sending the set elements xU and xS, the
server commits on xS. More precisely, in the first round the server sends com = G(xS),
where G : {0, 1}∗ → {0, 1}λ is a hash function and λ is a parameter of the protocol.
The user only accepts the session key after verifying that com corresponds to xS. The
session key K is derived as in GA-PAKE` but additionally takes the commitment com
as input. The protocol is sketched in Figure 11. The security of Com-GA-PAKE` for
EGATs is established in the following theorem.
Theorem 2 (Security of Com-GA-PAKE`). For any adversary A against Com-GA-
PAKE` that issues at most qe execute queries, qs send queries and at most qG and qH
queries to random oracles G and H, there exist an adversary B1 against GA-StCDH and
an adversary B2 against GA-GapCDH such that

AdvCom-GA-PAKE`(A) ≤ AdvGA-StCDH
EGAT (B1) + qs` ·

√
AdvGA-GapCDH

EGAT (B2) + (qs + qe)2

|G|`
+ qGqs
|G|`

+ 2 · (qG + qs + qe)2

2λ + qs
|PW|

,

where λ is the output length of G in bits.
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User U Server S

crs := (x0, x1) ∈ X 2,

pw := (b1, ..., b`) ∈ {0, 1}`
(s1, ..., s`) $← G`

for i ∈ [`]
xS
i := si ? xbi

(u1, ..., u`) $← G` com = G(xS
1, . . . , x

S
` )

for i ∈ [`]
xU
i := ui ? xbi

if com = G(xS
1, . . . , x

S
` )

for i ∈ [`] for i ∈ [`]
zi := ui ? x

S
i zi := si ? x

U
i

K := H(U,S, xU
1 , ..., x

U
` , x

S
1, ..., x

S
` , com, pw, z1, ..., z`)

com

xU
1 , ..., x

U
`

xS
1, ..., x

S
`

Figure 11: PAKE protocol Com-GA-PAKE` from group actions.

The proof is similar to the one of Theorem 1 so we will only sketch it here. The full
proof is given in Appendix E.

Sketch. After ensuring that all traces are unique, we need to deal with the commitment
and in particular collisions. First, we require that there are never two inputs to the
random oracle G that return the same commitment. This is to ensure that the adversary
cannot open a commitment to a different value, which might depend on previous
messages.

Second, we need to ensure that after the adversary has seen a commitment, it does
not query G on the input, which is the hiding property of the commitment. What we
actually do here is that we choose a random commitment in the first round. Only later
we choose the input and patch the random oracle accordingly.

Now we can replace the session keys of instances which are used in execute queries.
Here, the freshness condition allows the adversary to corrupt the password. However, as
both xS and xU are generated by the experiment, the only chance to notice this change
is to solve the GA-StCDH problem, where the decision oracle is required to simulate
instances correctly.

In order to replace the session keys of fresh instances which are used in send queries,
we make the key independent of the password. The session key of a fresh instance is
now defined by the trace of that instance. The only issue that may arise here is an
inconsistency between the session key that is derived using the trace and the session
key that is derived using the random oracle H. Whenever such an inconsistency occurs,
we differentiate between two cases:
– There exists more than one valid entry in TH for the same trace of a fresh instance,
but different passwords.

– There exists a valid entry in TH for the trace of a fresh instance and the correct
password, where the password was not corrupted when the query to H was made.
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Finally, we bound the probabilities of the two cases. Similar to Theorem 1, we will define
a new computational problem that reflects exactly the interaction in the protocol. We
show that this problem is implied by GA-GapCDH using the reset lemma. The general
idea is that the adversary can always compute the session key for one password guess,
but not for a second one. After excluding this, we choose the actual password, which
is possible because session keys are computed independently of the password. Thus,
looking at one fixed instance, the probability that the adversary guessed the password
correctly is 1/|PW|.

8 Variants of the PAKE Protocols

Both protocols X-GA-PAKE` and Com-GA-PAKE` require that the user and the server
generate multiple random group elements and evaluate their action on certain set
elements. In this section we present two optimizations that allow us to reduce the
number of random group elements and more importantly the number of necessary group
action evaluations.

8.1 Increasing the Number of Public Parameters

In X-GA-PAKE` and Com-GA-PAKE` the common reference string is set to crs :=
(x0, x1) ∈ X 2. Increasing the number of public parameters allows to reduce the number
of group action evaluations in the execution of the protocol. The idea is similar to
the optimizations deployed to speed up the CSIDH-based signatures schemes SeaSign
[DG19] and CSI-FiSh [BKV19]. We refer to Table 1 in the introduction for an overview
and example of the parameter choice.

We explain the changes on the basis of protocol X-GA-PAKE`. A security analysis
for the variant is provided in Appendix D.1. The analysis for the variant of Com-GA-
PAKE` is similar and is given in Appendix E.2. For some positive integer N dividing `,
we set

crs := (x0, . . . , x2N−1) ∈ X 2N .

As before, the password is a bitstring of length `, but now we divide it into `/N blocks
of length N and write

pw = (b1, ..., b`/N ) ∈ {0, ..., 2N − 1}`/N .

In particular xbi refers to one of the 2N different set elements in the crs. The general
outline of the protocol does not change. The only difference is that in the first step both
the server and the user only generate 2 · `/N random group elements (instead of 2 · `).
Hence they only need to perform 2 · `/N group action evaluations in the first round
and 3 · `/N evaluations in the session key derivation. We write X-GA-PAKE`,N for this
variant of the protocol.
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8.2 Using Twists in the Setup

Both X-GA-PAKE` and Com-GA-PAKE` require that some trusted party generates two
random set elements crs = (x0, x1). Here, we shortly discuss the setup where x1 is
replaced by the twist of x0, i.e. crs := (x0, x

t
0).

This simplification is particularly helpful when applied to one of the variants from
the previous subsection. These modified versions require to generate 2N random set
elements for the crs. Using twists it suffices to generate 2N−1 random set elements. More
precisely, a trusted party provides (x0, . . . , x2N−1−1) ∈ X 2N−1 , then user and server set
xi+2N−1 = xti for each i ∈ [0, 2N−1 − 1].

The security of X-GA-PAKEt
` and Com-GA-PAKEt

` (the twisted versions of X-GA-
PAKE` and Com-GA-PAKE`) are discussed in Appendices D.2 and E.2, respectively.
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Overview of Appendices
In Appendix A, we establish the relation between our assumptions and the computational
assumptions in [ADMP20]. In Appendix B, we recall the Reset Lemma which is used in
several security reductions. In Appendix C, we show that our first attempt GA-PAKE`
would be secure if an adversary was not able to compute twists efficiently. In Appendix D,
we provide a security analysis for the two variants of X-GA-PAKE`. Appendix E contains
the security analysis of Com-GA-PAKE` as well as an analysis for different variants of
the protocol. Finally, Appendix F deals with the perfect forward secrecy of GA-PAKE`,
X-GA-PAKE` and Com-GA-PAKE`.

A Relation to Assumptions from ADMP20
We first recall the definitions of a weak unpredictable permutation and weak unpre-
dictable group action from [ADMP20] and then relate them to the group action compu-
tational Diffie-Hellman problem from Section 3.

Definition 10 (Weak Unpredictable Permutation [ADMP20]). Let K, X and Y be
sets indexed by λ, and let DK and DX be distributions on K and X respectively. Let F $

k

be a randomized oracle that when queried, samples x← DX and outputs (x, F (k, x)). A
(DK , DX)-weak UP (wUP) is a family of efficiently computable permutations {F (k, ·) :
X → X}k∈K such that for all PPT adversaries A we have

Pr[AF
$
k (x∗) = F (k, x∗)] ≤ negl(λ),

where k ← DK , and x∗ ← DX . If DK and DX are uniform distributions, then we
simply speak of a wUP family.

Definition 11 (Weak Unpredictable Group Action [ADMP20]). A group action (G,X , ?)
is (DG , DX )-weakly unpredictable if the family of efficiently computable permutations
{πg : X → X}g∈G is (DG , DX )-weakly unpredictable, where πg is defined as πg : x 7→ g?x
and DG, DX are distributions on G, X respectively.

Proposition 2. If the group action computational Diffie-Hellman problem is hard for
a group action, then the group action is weak unpredictable.

Proof. Let A be an adversary against weak unpredictability, i.e., given access to an
oracle πg, where g ← DG and x∗ ← DX , A will compute g ? x∗. We use A to construct
an adversary B against the group action computational Diffie-Hellman problem. B
inputs (x, y) = (g ? x̃, h ? x̃) and has to compute gh ? x̃. Therefore, it runs A on x∗ := y.
On a query to πg, B chooses h′ ← DG and computes x′ = h′ ? x̃ (instead of x′ ← DX )
and returns (x′, h′ ? x) to A. Note that h′ ? x = g ? x′. Finally, A outputs g ? x∗, which
B forwards as a solution to the group action computational Diffie-Hellman problem,
since g ? x∗ = gh ? x̃.

The other direction is a bit more intricate. We can easily show that a more general
definition of the group action computational Diffie-Hellman problem, namely where
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the basis is not the origin element x̃, but a random set element, is tightly implied
by the weak unpredictability property. However, we can also use the standard group
action computational Diffie-Hellman problem, but with a non-tight reduction. Therefore,
we use the fact that GA-CDHx(y0, y1) = GA-CDH(GA-CDH(y0, y1), xt).

Proposition 3. If a group action is weak unpredictable, then the group action compu-
tational Diffie-Hellman problem is hard for the group action.

Proof. LetA be an adversary against the group action computational Diffie-Hellman prob-
lem, i.e., on input (x, y) = (g ? x̃, h ? x̃) it computes gh ? x̃. We use A to construct an
adversary B against weak unpredictability. B inputs x∗ ← DX and has access to an
oracle πg, where g ← DG . It queries πg once to receive (x, g ? x). Let x = g′ ? x̃. B runs
A on (g ?x, x∗) and A outputs gg′ ?x∗. Now B runs A a second time, this time on input
(gg′ ? x∗, xt). Note that GA-CDH(gg′ ? x∗, xt) = gg′(g′)−1 ? x∗, which is the solution for
the weak unpredictability experiment.

B Reset Lemma
We recall the reset lemma given by Bellare and Palacio [BP02, Lemma 3.1], which we
will need to relate some of our new assumptions.

Lemma 2 (Reset Lemma [BP02]). Fix a non-empty set H. Let B be an adversary that
on input (I, h) returns a pair, where the first element is a bit b and the second element
σ is some side output. Let IG be a randomized algorithm that we call instance generator.
The accepting probability of B is defined as

acc := Pr[b = 1 | I $← IG;h $← H; (b, σ) $← B(I, h)] .

The reset algorithm RB associated to B is defined as in Figure 12. Let res = Pr[b∗ = 1 :
I $← IG; (b∗, σ, σ′) $← RB(I)]. Then

acc ≤
√

res + 1
|H|

.

RB(I)
00 Pick random coins ρ for B
01 h $← H; (b, σ)← B(I, h; ρ)
02 h′ $← H; (b′, σ′)← B(I, h′; ρ)
03 if b = b′ = 1 and h 6= h′

04 return (1, σ, σ′)
05 return (0, ε, ε)

Figure 12: Reset algorithm RB associated to adversary B.
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C Security of GA-PAKE` in the EGA Setting
We introduce a new security assumption for EGA and REGA, namely the simultane-
ous GA-StCDH, which is used in the traditional Diffie-Hellman setting to prove security
of several PAKE protocols [PW17, AHH21].
Definition 12 (Simultaneous GA-StCDH (Sim-GA-StCDH)). On input (x, x0, x1) =
(g ? x̃, g0 ? x̃, g1 ? x̃), the Sim-GA-StCDH problem requires to compute the set elements
y0 = (g0

−1 · g) ? y, y1 = (g1
−1 · g) ? y, where y ∈ X can be chosen by the adversary A.

To an effective group action XXX ∈ {EGA,REGA}, we associate the advantage function
of A as

AdvSim-GA-StCDH
XXX (A) := Pr

y0 = GA-CDHx0(x, y),
y1 = GA-CDHx1(x, y)

∣∣∣∣∣∣
(g, g0, g1) $← G3

(x, x0, x1) := (g ? x̃, g0 ? x̃, g1 ? x̃)
(y, y0, y1)← AO(x, x0, x1)

 ,

where O = {GA-DDHx0(x, ·, ·),GA-DDHx1(x, ·, ·)}.
Note that the Sim-GA-StCDH problem is easy in the EGAT and REGAT setting,

where the group action allows to twist elements efficiently (see Definition 4). The attack
works exactly as the attack against GA-PAKE` given in Section 5. An adversary can
solve the Sim-GA-StCDH problem by choosing (y, y0, y1) = (xt, xt0, xt1).

On the other hand, if a group action does not allow for efficient twisting, the Sim-
GA-StCDH problem is believed to be hard. Pointcheval and Wand [PW17] analyzed
the generic hardness of the assumption in the traditional Diffie-Hellman setting, where
G = X = F∗p.
Theorem 3 (Security of GA-PAKE`). For any adversary A against GA-PAKE` that
issues at most qe execute queries and qs send queries and where H is modeled as a
random oracle, there exist adversary B1 against GA-StCDH and adversary B2 against
Sim-GA-StCDH such that

AdvGA-PAKE`(A) ≤ AdvGA-StCDH
EGA (B1) + AdvSim-GA-StCDH

EGA (B2) + qs
|PW|

+ (qs + qe)2

|G|`
.

Proof. The proof follows the one of Theorem 1 very closely, so we will give the full
games and adversaries in pseudocode, but leave descriptions short.

Let A be an adversary against GA-PAKE`. Consider the games in Figure 13.
Game G0. This is the original game, hence

AdvGA-PAKE`(A) ≤ |Pr[G0 ⇒ 1]− 1/2| .

Game G1. In game G1, we raise flag badcoll and output ⊥ whenever a server instance
computes the same trace as any other accepted instance or a user instance computes
the same trace as any other accepted user instance. As user and server messages consist
of ` group elements each, we have

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ Pr[badcoll] ≤
(qe + qs)2

|G|`
.
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GAMES G0-G4
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, T ) := (∅, ∅)
03 badcoll := false
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return Jβ = β′K

Execute(U, t0,S, t1)
09 if πt0U 6= ⊥ or πt1S 6= ⊥
10 return ⊥
11 (b1, ..., b`) := pwUS �G0-G3
12 (u1, ..., u`) $← G`
13 (s1, ..., s`) $← G`
14 xU := (xU

1 , ..., x
U
` ) := (u1 ? xb1 , ..., u` ? xb`) �G0-G3

15 xS := (xS
1, ..., x

S
`) := (s1 ? xb1 , ..., s` ? xb`) �G0-G3

16 z := (z1, ..., z`) := (u1 ? x
S
1, ..., u` ? x

S
`) �G0-G3

17 xU := (xU
1 , ..., x

U
` ) := (u1 ? x̃, ..., u` ? x̃) �G4

18 xS := (xS
1, ..., x

S
`) := (s1 ? x̃, ..., s` ? x̃) �G4

19 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U,S, xU, xS) �G1-G4
20 badcoll := true �G1-G4
21 return ⊥ �G1-G4
22 K := H(U, S, xU, xS, pwUS, z) �G0-G2
23 K $← K �G3-G4
24 πt0U := ((u1, ..., u`), (U, S, xU, xS),K, true)
25 πt1S := ((s1, ..., s`), (U, S, xU, xS),K, true)
26 (πt0U .fr, π

t1
S .fr) := (true, true) �G2-G4

27 return (U, xU, S, xS)

Reveal(P, t)
28 if πtP.acc 6= true or πtP.test = true
29 return ⊥
30 if ∃P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt

′

P′) = 1
and πt

′

P′ .test = true
31 return ⊥
32 ∀(P′, t′) s. t. πt

′

P′ .tr = πtP.tr �G2-G4

33 πt
′

P′ .fr := false �G2-G4
34 return πtP.K

Test(P, t))
35 if Fresh(πtP) = false return ⊥ �G0-G1
36 if πtP.fr = false return ⊥ �G2-G4
37 K∗0 := Reveal(P, t)
38 if K∗0 = ⊥ return ⊥
39 K∗1

$← K
40 πtP.test := true
41 return K∗β

H(U, S, xU, xS, pw, z)
42 if T [U, S, xU, xS, pw, z] = K 6= ⊥
43 return K
44 T [U,S, xU, xS, pw, Z] $← K
45 return T [U, S, xU, xS, pw, z]

SendInit(U, t, S)
46 if πtU 6= ⊥ return ⊥
47 (b1, ..., b`) := pwUS
48 (u1, ..., u`) $← G`
49 xU := (xU

1 , ..., x
U
` ) := (u1 ? xb1 , ..., u` ? xb`)

50 πtU := ((u1, ..., u`), (U,S, xU,⊥),⊥,⊥)
51 πtU.fr := false �G2-G4
52 return (U, xU)

SendResp(S, t,U, xU)
53 if πtS 6= ⊥ return ⊥
54 (b1, ..., b`) := pwUS
55 (s1, ..., s`) $← G`
56 xS := (xS

1, ..., x
S
`) := (s1 ? xb1 , ..., s` ? xb`)

57 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U,S, xU, xS) �G1-G4
58 badcoll := true �G1-G4
59 return ⊥ �G1-G4
60 if (U, S) /∈ C �G2-G4
61 πtS.fr := true �G2-G4
62 else �G2-G4
63 πtS.fr := false �G2-G4
64 z := (z1, ..., z`) := (s1 ? x

U
1 , ..., s` ? x

U
` )

65 K := H(U, S, xU, xS, pwUS, z)
66 πtS := ((s1, ..., s`), (U, S, xU, xS),K, true)
67 return (S, xS)

SendTermInit(U, t, S, xS)
68 if πtU 6= ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)
69 return ⊥
70 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U, S, xU, xS) �G1-G4

71 badcoll := true �G1-G4
72 return ⊥ �G1-G4

73 if ∃t′ s. t. πt
′

S .tr = (U, S, xU, xS)
and πt

′
S .fr = true �G2-G4

74 πtU.fr := true �G2-G4
75 else if (U,S) /∈ C �G2-G4
76 πtU.fr := true �G2-G4
77 else �G2-G4
78 πtU.fr := false �G2-G4
79 z := (z1, ..., z`) := (u1 ? x

S
1, ..., u` ? x

S
`)

80 K := H(U, S, xU, xS, pwUS, z)
81 πtU := ((u1, ..., u`), (U, S, xU, xS),K, true)
82 return true

Corrupt(U, S)
83 if (U,S) ∈ C return ⊥
84 for P ∈ {U,S}
85 if ∃t s. t. πtP.test = true

and @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt
′

P′) = 1
86 return ⊥
87 ∀πtP : if @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt

′

P′) = 1 �G2-G4
88 πtP.fr = false �G2-G4
89 C := C ∪ {(U,S)}
90 return pwUS

Figure 13: Games G0-G4 for the proof of Theorem 3. A has access to oracles O :=
{Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}.
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Game G2. In game G2, we make the freshness explicit. To each oracle πtP, we assign an
additional variable πtP.fr which is updated during the game. These are only a conceptual
changes, hence

Pr[G2 ⇒ 1] = Pr[G1 ⇒ 1] .

Game G3. In game G3, we choose random keys for all instances queried to Execute.
We construct adversary B1 against GA-StCDH in Figure 14 and show that

|Pr[G3 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ AdvGA-StCDH
EGA (B1) . (1)

Adversary B1 inputs a GA-StCDH challenge (x, y) = (g ? x̃, h ? x̃) and has access to a
decision oracle GA-DDH(x, ·, ·). First, it generates the crs elements (x0, x1) as in game
G3 and then runs adversary A. In Execute queries, B1 chooses random group elements
ui and si and computes xU using x and xS using y independent of the password such
that

xU
i = ui ? x = (ui · g) ? x̃ = (ui · g · gbi · g−1

bi
) ? x̃ = (ui · g · g−1

bi
) ? xbi

and analogously for server instances. Note that the value zi is implicitly set to

zi = ui · g · si · h · g−1
bi

? x̃

Before choosing a random session key now, we check if there has been a query to the
random oracle H with the correct z. This can be done using the decision oracle and the
following equality:

GA-CDH(x, xS
i ) = (u−1

i · gbi) ? zi ⇔ GA-CDH(xU
i , x

S
i ) = gbi ? zi

⇔ GA-CDHxbi (x
U
i , x

S
i ) = zi .

If one zi is correct, B1 aborts and outputs the solution (u−1
i · s

−1
i · gbi) ? zi = (g · h) ? x̃.

Otherwise, we store the values ui and si in list Te together with the trace and the
password and choose a session key uniformly at random. List Te is used to identify
relevant queries to H. In particular, if the trace and password appear in a query, we
retrieve the values ui and si to check whether the provided zi are correct as described
above. If the oracle returns 1 for any i, B1 aborts and outputs (u−1

i · s
−1
i · gbi) ? zi.

Game G4. In game G4, we remove the password from execute queries and use x̃ as the
basis to compute xU

i and xS
i . This change is not observable by A and

Pr[G4 ⇒ 1] = Pr[G3 ⇒ 1] .

Game G5. G5 is given in Figure 15. In this game we want to replace the session keys
by random for all fresh instances in oracles SendResp and SendTermInit. Therefore,
we introduce an additional independent random oracle Ts which maps only the trace
of an instance to a key. For all instances that are not fresh, we simply compute the
correct key using random oracle H. If an instance is fresh and there is an inconsistency
between T and Ts, we raise flag bad. This happens in the following cases:
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BGA-DDH(x,·,·)
1 (x, y)

00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, T, Te) := (∅, ∅, ∅)
03 β $← {0, 1}
04 for (U,S) ∈ U × S
05 pwUS

$← PW
06 β′ ← AO(x0, x1)
07 Stop.

H(U, S, xU, xS, pw, z)
08 if ∃(u1, ..., u`, s1, ..., s`)

s. t. (U, S, xU, xS, pw, u1, ..., u`, s1, ..., s`) ∈ Te
09 (b1, ..., b`) := pw
10 for i ∈ [`]
11 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi) = 1

12 Stop with (u−1
i · s

−1
i · gbi) ? zi

13 if T [U, S, xU, xS, pw, z] = K 6= ⊥
14 return K
15 T [U, S, xU, xS, pw, z] $← K
16 return T [U,S, xU, xS, pw, z]

Execute(U, t0, S, t1)
17 if πt0U 6= ⊥ or πt1S 6= ⊥
18 return ⊥
19 (b1, ..., b`) := pwUS
20 (u1, ..., u`) $← G`
21 (s1, ..., s`) $← G`
22 xU := (xU

1 , ..., x
U
` ) := (u1 ? x, ..., u` ? x)

23 xS := (xS
1, ..., x

S
`) := (s1 ? y, ..., s` ? y)

24 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, xS)
25 return ⊥
26 ∀z s. t. (U, S, xU, xS, pwUS, z) ∈ T
27 for i ∈ [`]
28 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi) = 1

29 Stop with (u−1
i · s

−1
i · gbi) ? zi

30 Te := Te ∪ {U, S, xU, xS, pwUS, u1, ..., u`, s1, ..., s`}
31 K $← K
32 πt0U := ((u1, ..., u`), (U,S, xU, xS),K, true)
33 πt1S := ((s1, ..., s`), (U, S, xU, xS),K, true)
34 (πt0U .fr, π

t1
S .fr) := (true, true)

35 return (U, xU, S, xS)

Figure 14: Adversary B1 against GA-StCDH for the proof of Theorem 3. A has access to
oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,
Test,H}. Oracles SendInit, SendResp, SendTermInit, Reveal, Corrupt and
Test are defined as in G2. Lines written in blue show how B1 simulates the game.

• a fresh user or server instance is about to compute the session key, but there
already exists a valid entry in T .

• the random oracle is queried on some trace of a fresh instance that appears in Ts
together with the correct password and z.

Note that when bad is not raised, there is no difference between G4 and G5. Hence,

|Pr[G5 ⇒ 1]− Pr[G4 ⇒ 1]| ≤ Pr[G5 ⇒ bad] .

Game G6. G6 is given in Figure 16. In this game we remove the password from send
queries and generate passwords as late as possible. In SendInit and SendResp we
then compute xU and xS using x̃ such that

xU
i = ui · x̃ = (ui · g−1

0 ) ? x0 = (ui · g−1
1 ) ? x1

and equivalently for server instances. For all instances that are not fresh, we have to
compute the real session key using zi = (si · g−1

bi
) ? xU

i or zi = (ui · g−1
bi

) ? xS
i . Now we

split event bad into two different events:
– badpw captures the event that there exists more than one valid entry in T for the
same trace of a fresh instance, but different passwords.

– badguess happens only if badpw does not happen and if there exists a valid entry in
T for the trace of a fresh instance and the correct password.

To identify the different events, we introduce a new set Tbad. For all fresh instances in
SendResp and SendTermInit, we now iterate over all entries in T that contain the

273



M. Abdalla, T. Eisenhofer, E. Kiltz, S. Kunzweiler, and D. Riepel

GAME G5
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, T, Ts) := (∅, ∅, ∅)
03 bad := false
04 β $← {0, 1}
05 for (U,S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return Jβ = β′K

Execute(U, t0, S, t1)
09 if πt0U 6= ⊥ or πt1S 6= ⊥
10 return ⊥
11 (u1, ..., u`) $← G`
12 (s1, ..., s`) $← G`
13 xU := (xU

1 , ..., x
U
` ) := (u1 ? x̃, ..., u` ? x̃)

14 xS := (xS
1, ..., x

S
`) := (s1 ? x̃, ..., s` ? x̃)

15 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, xS)
16 return ⊥
17 K $← K
18 πt0U := ((u1, ..., u`), (U, S, xU, xS),K, true)
19 πt1S := ((s1, ..., s`), (U, S, xU, xS),K, true)
20 (πt0U .fr, π

t1
S .fr) := (true, true)

21 return (U, xU, S, xS)

SendInit(U, t, S)
22 if πtU 6= ⊥ return ⊥
23 (b1, ..., b`) := pwUS
24 (u1, ..., u`) $← G`
25 xU := (xU

1 , ..., x
U
` ) := (u1 ? xb1 , ..., u` ? xb`)

26 πtU := ((u1, ..., u`), (U,S, xU,⊥),⊥,⊥)
27 πtU.fr := false
28 return (U, xU)

H(U,S, xU, xS, pw, z)
29 if T [U, S, xU, xS, pw, z] = K 6= ⊥
30 return K
31 if (U, S, xU, xS) ∈ Ts and pw = pwUS
32 if Ts[U, S, xU, xS] = (U, u1, ..., u`,K)
33 z′ := (z′1, ..., z′`) := (u1 ? x

S
1, ..., u` ? x

S
`)

34 if Ts[U, S, xU, xS] = (S, s1, ..., s`,K)
35 z′ := (z′1, ..., z′`) := (s1 ? x

U
1 , ..., s` ? x

U
` )

36 if z = z′

37 if (U, S) ∈ C
38 return K
39 if (U, S) /∈ C
40 bad := true
41 T [U, S, xU, xS, pw, z] $← K
42 return T [U,S, xU, xS, pw, z]

SendResp(S, t,U, xU)
43 if πtS 6= ⊥ return ⊥
44 (b1, ..., b`) := pwUS
45 (s1, ..., s`) $← G`
46 xS := (xS

1, ..., x
S
`) := (s1 ? xb1 , ..., s` ? xb`)

47 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, xS)
48 return ⊥
49 if (U, S) /∈ C
50 πtS.fr := true
51 if ∃z s. t. (U,S, xU, xS, pwUS, z) ∈ T

and zi = si ? x
U
i ∀i ∈ [`]

52 bad := true
53 K $← K
54 Ts[U, S, xU, xS] := (S, (s1, ..., s`),K)
55 else
56 πtS.fr := false
57 z := (z1, ..., z`) := (s1 ? x

U
1 , ..., s` ? x

U
` )

58 K := H(U, S, xU, xS, pwUS, z)
59 πtS := ((s1, ..., s`), (U,S, xU, xS),K, true)
60 return (S, xS)

SendTermInit(U, t, S, xS)
61 if πtU 6= ((u1, ..., u`), (U,S, xU,⊥),⊥,⊥)
62 return ⊥
63 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U, S, xU, xS)

64 return ⊥
65 if ∃t′ s. t. πt

′
S .tr = (U, S, xU, xS)

and πt
′

S .fr = true
66 πtU.fr := true
67 (S, (s1, ..., s`),K) := Ts[U, S, xU, xS]
68 else if (U,S) /∈ C
69 πtU.fr := true
70 if ∃z s. t. (U, S, xU, xS, pwUS, z) ∈ T

and zi = ui ? x
S
i ∀i ∈ [`]

71 bad := true
72 K $← K
73 Ts[U, S, xU, xS] := (U, (u1, ..., u`),K)
74 else
75 πtU.fr := false
76 z := (z1, ..., z`) := (u1 ? x

S
1, ..., u` ? x

S
`)

77 K := H(U,S, xU, xS, pwUS, z)
78 πtU := ((u1, ..., u`), (U,S, xU, xS),K, true)
79 return true

Figure 15: Game G5 for the proof of Theorem 3. A has access to oracles O :=
{Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}. Or-
acles Reveal, Corrupt and Test are defined as in Figure 13. Differences to game
G4 are highlighted in blue.

corresponding trace. We check if the given password and z are valid for this trace by
computing the real values z′ in the same way as for non-fresh instances. If z = z′, we
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GAME G6
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, T, Ts, Tbad) := (∅, ∅, ∅, ∅)
03 (badguess,badpw,badpfs) = (false, false, false)
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 for (U, S) ∈ U × S \ C
07 pwUS

$← PW
08 if ∃pw, pw′, (U, S, xU, xS, z, z′)

s. t. (U,S, xU, xS, pw, z) ∈ Tbad
and (U, S, xU, xS, pw′, z′) ∈ Tbad

09 badpw := true
10 else
11 if ∃U, S, xU, xS, z

s. t. (U, S, xU, xS, pwUS, z) ∈ Tbad
12 badguess := true
13 return Jβ = β′K

Corrupt(U, S)
14 if (U, S) ∈ C return ⊥
15 for P ∈ {U, S}
16 if ∃t s. t. πtP.test = true

and @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt
′

P′) = 1
17 return ⊥
18 ∀πtP : if @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt

′

P′) = 1
19 πtP.fr = false
20 C := C ∪ {(U, S)}
21 pwUS

$← PW
22 return pwUS

SendInit(U, t, S)
23 if πtU 6= ⊥ return ⊥
24 (u1, ..., u`) $← G`
25 xU := (xU

1 , ..., x
U
` ) := (u1 ? x̃, ..., u` ? x̃)

26 πtU := ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)
27 πtU.fr := ⊥
28 return (U, xU)

H(U, S, xU, xS, pw, z)
29 if T [U,S, xU, xS, pw, z] = K 6= ⊥ return K
30 if (U, S, xU, xS) ∈ Ts
31 (b1, ..., b`) := pw
32 if Ts[U, S, xU, xS] = (U, u1, ..., u`,K)
33 z′ := ((u1 · g−1

b1
) ? xS

1, ..., (u` · g−1
b`

) ? xS
`)

34 if Ts[U, S, xU, xS] = (S, s1, ..., s`,K)
35 z′ := ((s1 · g−1

b1
) ? xU

1 , ..., (s` · g−1
b`

) ? xU
` )

36 if z = z′

37 if (U, S) ∈ C and pw = pwUS
38 return K
39 if (U, S) /∈ C
40 Tbad := Tbad ∪ {U, S, xU, xS, pw, z}
41 T [U, S, xU, xS, pw, z] $← K
42 return T [U,S, xU, xS, pw, z]

SendResp(S, t,U, xU)
43 if πtS 6= ⊥ return ⊥
44 (s1, ..., s`) $← G`
45 xS := (xS

1, ..., x
S
`) := (s1 ? x̃, ..., s` ? x̃)

46 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, xS)
47 return ⊥
48 if (U, S) /∈ C
49 πtS.fr := true
50 ∀pw, z s. t. (U, S, xU, xS, pw, z) ∈ T
51 (b1, ..., b`) := pw
52 z′ := ((s1 · g−1

b1
) ? xU

1 , ..., (s` · g−1
b`

) ? xU
` )

53 if z = z′

54 Tbad := Tbad ∪ {(U, S, xU, xS, pw, z)}
55 K $← K
56 Ts[U, S, xU, xS] := (S, (s1, ..., s`),K)
57 else
58 πtS.fr := false
59 (b1, ..., b`) := pwUS
60 z := ((s1 · g−1

b1
) ? xU

1 , ..., (s` · g−1
b`

) ? xU
` )

61 K := H(U, S, xU, xS, pwUS, z)
62 πtS := ((s1, ..., s`), (U,S, xU, xS),K, true)
63 return (S, xS)

SendTermInit(U, t, S, xS)
64 if πtU 6= ((u1, ..., u`), (U,S, xU,⊥),⊥,⊥)
65 return ⊥
66 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U, S, xU, xS)

67 return ⊥
68 if ∃t′ s. t. πt

′
S .tr = (U, S, xU, xS)

and πt
′

S .fr = true
69 πtU.fr := true
70 (S, (s1, ..., s`),K) := Ts[U, S, xU, xS]
71 else if (U,S) /∈ C
72 πtU.fr := true
73 ∀pw, z s. t. (U,S, xU, xS, pw, z) ∈ T
74 (b1, ..., b`) := pw
75 z′ := ((u1 · g−1

b1
) ? xS

1, ..., (u` · g−1
b`

) ? xS
`)

76 if z = z′

77 Tbad := Tbad ∪ {(U,S, xU, xS, pw, z)}
78 K $← K
79 Ts[U, S, xU, xS] := (U, (u1, ..., u`),K)
80 else
81 πtU.fr := false
82 (b1, ..., b`) := pwUS
83 z := ((u1 · g−1

b1
) ? xS

1, ..., (u` · g−1
b`

) ? xS
`)

84 K := H(U,S, xU, xS, pwUS, z)
85 πtU := ((u1, ..., u`), (U,S, xU, xS),K, true)
86 return true

Figure 16: Game G6 for the proof of Theorem 3. A has access to oracles O :=
{Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,H}. Or-
acles Reveal and Test are defined as in game G4 in Figure 13. Oracle Execute is
defined as in Figure 15. Differences to game G5 are highlighted in blue.
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add this entry to the set Tbad. We essentially do the same when the random oracle H is
queried on a trace that appears in Ts. Here, the adversary specifies the password and
we check if z is valid for that password using the ui stored in Ts for user instances and
si for server instances. If z is valid and the instance is still fresh, we add the query to
Tbad. In case the password was corrupted in the meantime, we output the key stored in
Ts as introduced in the previous game.

After the adversary terminates, we check Tbad whether event badpw or event badguess
occurred. We will bound these events below. First note that whenever bad is raised in
G5, then either flag badguess or badpw is raised in G6, thus

Pr[G5 ⇒ bad] ≤ Pr[G6 ⇒ badpw] + Pr[G6 ⇒ badguess] .

To bound badpw, we construct adversary B2 against Sim-GA-StCDH in Figure 17. When
badpw occurs, then B2 can solve Sim-GA-StCDH. Hence,

Pr[G6 ⇒ badpw] ≤ AdvSim-GA-StCDH
EGA (B2) .

Adversary B2 inputs (x, x0, x1), where x = g ? x̃, x0 = g0 ? x̃ and x1 = g1 ? x̃ for
uniformly random group elements g, g0, g1 ∈ G. It also has access to decision oracles
GA-DDHx0(x, ·, ·) and GA-DDHx1(x, ·, ·). It runs adversary A on (x0, x1). On a query
to SendInit, B2 embeds x in xU such that

xU
i = ui ? x = (ui · g−1

0 · g) ? x0 = (ui · g−1
1 · g) ? x1 .

The simulation of xS
i in SendResp is done in the same way. In case the server instance

is fresh, we must check if there already exists an entry in T that causes an inconsistency,
iterating over all pw, z, in T and using the decision oracles to check

zi = GA-CDHxbi (x
U
i , x

S
i ) = GA-CDHxbi (x

U
i , si ? x) ⇔ GA-CDHxbi (x, x

U
i ) = s−1

i ? zi ,

If all zi are valid, then we add this entry to Tbad.
If the instance is not fresh, then we have to compute the correct key. We check list

T for a valid entry z as explained above or choose a random key and add a special entry
to T , which instead of z contains the secret group elements si so that we can patch the
random oracle later. SendTermInit is simulated analogously.

Now we look at the random oracle queries. If the trace is contained in set Ts, we
check if z is valid using the GA-DDH oracle. In case z is valid, we first check if the
instance is still fresh and we add the query to Tbad. Otherwise, if the password was
corrupted and is specified in the query, we return the session key stored in Ts. Next,
we check if the query matches a special entry in T that was added in SendResp or
SendTermInit for a non-fresh instance to keep the output consistent.

After A terminates with output β′, B2 chooses the passwords which have not been
generated yet. If badpw occurred, then there must be two entries in Tbad for the same
trace and different passwords pw and pw′ along with values z and z′. As pw 6= pw′, we
look for the first index i where the two passwords differ, i.e., bi 6= b′i. Recall that the Sim-
GA-StCDH problem requires to compute y0 = GA-CDHx0(x, y), y1 = GA-CDHx1(x, y),
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BGA-DDHx0 (x,·,·),GA-DDHx1 (x,·,·)
2 (x, x0, x1)

00 (C, T, Ts) := (∅, ∅, ∅)
01 β $← {0, 1}
02 β′ ← AO(x0, x1)
03 for (U, S) ∈ U × S \ C
04 pwUS

$← PW
05 if ∃pw, pw′, (U, S, xU, xS, z, z′)

s. t. (U, S, xU, xS, pw, z) ∈ Tbad
and (U, S, xU, xS, pw′, z′) ∈ Tbad

06 (b1, ..., b`) := pw
07 (b′1, ..., b′`) := pw′
08 Find first index i such that bi 6= b′i
09 W.l.o.g. let bi = 0, b′i = 1
10 if Ts[U, S, xU, xS] = (U, (u1, ..., u`),K)
11 Stop with (xS

i , u
−1
i ? zi, u

−1
i ? z′i)

12 if Ts[U, S, xU, xS] = (S, (s1, ..., s`),K)
13 Stop with (xU

i , s
−1
i ? zi, s

−1
i ? z′i)

SendInit(U, t, S)
14 if πtU 6= ⊥ return ⊥
15 (u1, ..., u`) $← G`
16 xU := (xU

1 , ..., x
U
` ) := (u1 ? x, ..., u` ? x)

17 πtU := ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)
18 return (U, xU)

H(U,S, xU, xS, pw, z)
19 if T [U, S, xU, xS, pw, z] = K 6= ⊥ return K
20 if (U,S, xU, xS) ∈ Ts
21 (b1, ..., b`) := pw
22 if Ts[U, S, xU, xS] = (U, (u1, ..., u`),K)
23 if GA-DDHxbi

(x, xS
i , u
−1
i ? zi) = 1 ∀i ∈ [`]

24 if (U,S) /∈ C
25 Tbad := Tbad ∪ {(U, S, xU, xS, pw, z)}
26 if (U, S) ∈ C and pw = pwUS
27 return K
28 if Ts[U, S, xU, xS] = (S, (s1, ..., s`),K)
29 if GA-DDHxbi

(x, xU
i , s
−1
i ? zi) = 1 ∀i ∈ [`]

30 if (U, S) /∈ C
31 Tbad := Tbad ∪ {(U, S, xU, xS, pw, z)}
32 if (U, S) ∈ C and pw = pwUS
33 return K
34 if ∃(u1, ..., u`) s. t. (U, S, xU, xS, pw, (u1, ..., u`)) ∈ T
35 (b1, ..., b`) := pw
36 if GA-DDHxbi

(x, xS
i , u
−1
i ? zi) = 1 ∀i ∈ [`]

37 return T [U, S, xU, xS, pw, (u1, ..., u`)]
38 else if ∃(s1, ..., s`) s. t. (U, S, xU, xS, pw, (s1, ..., s`)) ∈ T
39 (b1, ..., b`) := pw
40 if GA-DDHxbi

(x, xU
i , s
−1
i ? zi) = 1 ∀i ∈ [`]

41 return T [U,S, xU, xS, pw, (s1, ..., s`)]
42 T [U, S, xU, xS, pw, z] $← K
43 return T [U,S, xU, xS, pw, z]

SendResp(S, t,U, xU)
44 if πtS 6= ⊥ return ⊥
45 (s1, ..., s`) $← G`
46 xS := (xS

1, ..., x
S
`) := (s1 ? x, ..., s` ? x)

47 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, xS)
48 return ⊥
49 if (U,S) /∈ C
50 πtS.fr := true
51 ∀pw, z s. t. (U, S, xU, xS, pw, z) ∈ T
52 (b1, ..., b`) := pw
53 if GA-DDHxbi

(x, xU
i , s
−1
i ? zi) = 1 ∀i ∈ [`]

54 Tbad := Tbad ∪ {(U, S, xU, xS, pw, z)}
55 K $← K
56 Ts[U, S, xU, xS] := (S, (s1, ..., s`),K)
57 else
58 πtS.fr := false
59 (b1, ..., b`) := pwUS
60 if ∃z s. t. (U, S, xU, xS, pwUS, z) ∈ T

and GA-DDHxbi
(x, xU

i , s
−1
i ? zi) = 1 ∀i ∈ [`]

61 K := T [U,S, xU, xS, pwUS, z]
62 else
63 K $← K
64 T [U, S, xU, xS, pwUS, (s1, ..., s`)] := K
65 πtS := ((s1, ..., `), (U, S, xU, xS),K, true)
66 return (S, xS)

SendTermInit(U, t, S, xS)
67 if πtU 6= ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)
68 return ⊥
69 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U,S, xU, xS)

70 return ⊥
71 if ∃t′ s. t. πt

′
S .tr = (U,S, xU, xS) and πt

′
S .fr = true

72 πtU.fr := true
73 (S, (s1, ..., s`),K) := Ts[U, S, xU, xS]
74 else if (U, S) /∈ C
75 πtU.fr := true
76 ∀pw, z s. t. (U, S, xU, xS, pw, z) ∈ T
77 (b1, ..., b`) := pw
78 if GA-DDHxbi

(x, xS
i , u
−1
i ? zi) = 1 ∀i ∈ [`]

79 Tbad := Tbad ∪ {(U, S, xU, xS, pw, z)}
80 K $← K
81 Ts[U,S, xU, xS] := (U, (u1, ..., u`),K)
82 else
83 πtS.fr := false
84 (b1, ..., b`) := pwUS
85 if ∃z s. t. (U, S, xU, xS, pwUS, z) ∈ T

and GA-DDHxbi
(x, xS

i , u
−1
i ? zi) = 1 ∀i ∈ [`]

86 K := T [U,S, xU, xS, pwUS, z]
87 else
88 K $← K
89 T [U, S, xU, xS, pwUS, (u1, ..., u`)] := K
90 πtU := ((u1, ..., u`), (U,S, xU, xS),K, true)
91 return true

Figure 17: Adversary B2 against Sim-GA-StCDH for the proof of Theorem 3. A has
access to oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,
Corrupt,Test,H}. Oracles Execute, Reveal, Corrupt and Test are defined as
in G6. Lines written in blue show how B2 simulates the game.
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where y can be chosen by the adversary. If the entries in Tbad belong to a user instance,
B2 sets y = xS

i and outputs y together with

y0 = u−1
i ? zi = GA-CDHx0(u−1

i ? xU
i , x

S
i ) = GA-CDHx0(x, xS

i ) ,

y1 = u−1
i ? z′i = GA-CDHx1(u−1

i ? xU
i , x

S
i ) = GA-CDHx1(x, xS

i ) .

If the instance is a server instance, B2 outputs (y, y0, y1) = (xU
i , s
−1
i ? zi, s

−1
i ? z′i). This

concludes the analysis of badpw.

Next, we analyze event badguess. As badguess happens only if badpw does not happen,
there is at most one entry for each instance in Tbad and the size of Tbad is at most
qs. As all entries were added before the corresponding password was sampled, we can
bound the probability by

Pr[G6 ⇒ badguess] ≤
qs
|PW|

.

Finally, if none of the bad events happens in G6, all session keys output by Test are
uniformly random and the adversary can only guess β. Hence, Pr[G6 ⇒ 1] = 1

2 and
collecting the probabilities yields the bound in Theorem 3.

D Security of X-GA-PAKE`,N and X-GA-PAKEt
`

Protocols X-GA-PAKE`,N and X-GA-PAKEt
` are the two variants of X-GA-PAKE` as

introduced in Section 8. In Appendices D.1 and D.2, we now provide a security analysis
for the two protocols.

D.1 X-GA-PAKE`,N

The main result of this part is the following theorem.

Theorem 4 (Security of X-GA-PAKE`,N ). For any adversary A against X-GA-PAKE`,N
that issues at most qe execute queries and qs send queries and where H is modeled as a
random oracle, there exist adversary B1 against GA-StCDH and B2 against SqInv-GA-
StCDH such that

AdvX-GA-PAKE`,N (A) ≤ AdvGA-StCDH
EGA (B1) + 2 · AdvSqInv-GA-StCDH

EGA (B2) + qs
|PW|

+ (qs + qe)2

|G|M
.

The proof of Theorem 4 is very similar to the proof of Theorem 1. Therefore we do not
give a full proof for the security of X-GA-PAKE`,N , but shortly explain the difference
between the two proofs.

The security assumptions underlying the proof of Theorem 1 need to be slightly
adapted. In particular, the problem DSim-GA-StCDH is replaced by its variant 2NDSim-
GA-StCDH. However the 2NDSim-GA-StCDH problem can be reduced to DSim-GA-
StCDH (Lemma 3).
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Definition 13 (2NDSim-GA-StCDH). On input (x0 = g0 ? x̃, ..., x2N−1 = g2N−1 ?

x̃, w0 = h0 ? x̃, w1 = h1 ? x̃) ∈ X 2N+2, the 2NDSim-GA-StCDH problem requires to find
i 6= j ∈ [0, 2N − 1] and a tuple (y, y0, y1, y2, y3) ∈ X 5 such that

(y0, y1, y2, y3) = (g−1
i · h0 ? y, g

−1
i · h1 ? y, g

−1
j · h0 ? y, g

−1
j · h1 ? y).

For a group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage func-
tion of an adversary A as

Adv2NDSim-GA-StCDH
XXX (A) := Pr


i 6= j ∈ [0, 2N − 1]

y0 = GA-CDHxi(w0, y)
y1 = GA-CDHxi(w1, y)
y2 = GA-CDHxj (w0, y)
y3 = GA-CDHxj (w1, y)

∣∣∣∣∣∣∣∣∣∣
(g0, ..., g2N−1, h0, h1) $← G2N+2

(x0, ..., x2N−1) = (g0 ? x̃, ..., g2N−1 ? x̃)
(w0, w1) = (h0 ? x̃, h1 ? x̃)

(i, j, y, y0, y1, y2, y3)← AO(x0, ..., x2N−1, w0, w1)

 ,

where O = {GA-DDHxi(wj , ·, ·)}i∈[0,2N−1],j∈{0,1}.

Lemma 3. For any adversary A against 2NDSim-GA-StCDH, there exists adversary B
against DSim-GA-StCDH such that

Adv2NDSim-GA-StCDH
EGAT (A) ≤ 2 · AdvDSim-GA-StCDH

EGAT (B) .

Proof. We construct adversary B as follows. On input (x0, x1, w0, w1) = (g0 ? x̃, g1 ?
x̃, h0 ? x̃, h1 ? x̃), B chooses a random bit bi $← {0, 1}, a random group element
αi

$← G and computes x′i = αi ? xbi for each i ∈ {0, ..., 2N − 1}. Then it runs A
on input (x′0, ..., x′2N−1, w0, w1). Finally, A outputs two indices (i, j) with i 6= j and
(y, y0, y1, y2, y3). If bi = bj which happens with probability 1/2, then B aborts. Oth-
erwise, assume that bi = 0 and bj = 1. Then x′i = (αig0) ? x̃ and x′j = (αjg1) ? x̃,
hence

y0 = (α−1
i g−1

0 h0) ? y, y2 = (α−1
j g−1

1 h0) ? y,
y1 = (α−1

i g−1
0 h1) ? y, y3 = (α−1

j g−1
1 h1) ? y.

It follows that B can compute the solution by simply multiplying by αi and αj respec-
tively. If bj = 0 and bi = 1, the output of B must be swapped.

During the experiment, A also has access to decision oracles GA-DDHx′
i
(wj , ·, ·) for

i ∈ {0, ..., 2N−1} and j ∈ {0, 1}. These can be easily simulated using B’s decision oracles.
On a query GA-DDHx′

i
(wj , z1, z2), B queries its own oracle on GA-DDHxbi

(wj , z1, αi?
z2) and forwards the output to A.

D.2 X-GA-PAKEt
`

Here we discuss the security of X-GA-PAKEt
`, the twisted version of X-GA-PAKE`, in

more detail. For the most part, one can just replace x1 by xt0 everywhere in the proof of
Theorem 1. The only significant difference occurs in the analysis of the event badpw. In
particular this event does not allow to construct an adversary against DSim-GA-StCDH.
Instead, we need to consider the following alteration of DSim-GA-StCDH for the security
analysis.
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Definition 14 (Twisted Double Simultaneous GA-StCDH (TDSim-GA-StCDH)). On
input (x0 = g0 ? x̃, w0 = h0 ? x̃, w1 = h1 ? x̃) ∈ X 3, the TDSim-GA-StCDH requires to
find a tuple (y, y0, y1, y2, y3) ∈ X 5 such that

(y0, y1, y2, y3) = (g−1
0 · h0 ? y, g

−1
0 · h1 ? y, g0 · h0 ? y, g0 · h1 ? y).

For a group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage func-
tion of an adversary A as

AdvTDSim-GA-StCDH
XXX (A) := Pr


y0 = GA-CDHx0(w0, y)
y1 = GA-CDHx0(w1, y)
y2 = GA-CDHxt0(w0, y)
y3 = GA-CDHxt0(w1, y)

∣∣∣∣∣∣∣∣
(g0, h0, h1) $← G4

x0 = g0 ? x̃
(w0, w1) = (h0 ? x̃, h1 ? x̃)

(y, y0, y1, y2, y3)← AO(x0, w0, w1)

 ,

where O = {GA-DDHx0(wj , ·, ·)}j∈{0,1}.

The proof of Lemma 1 can be adapted to the TDSim-GA-StCDH problem in a
straightforward way, showing that

AdvTDSim-GA-StCDH
EGAT (A) ≤ AdvSqInv-GA-StCDH

EGAT (B) .

Consequently the statement of Theorem 1 continues to hold true for X-GA-PAKEt
`.

E Security of Com-GA-PAKE` and its Variants
The first part of this section is dedicated to the proof of Theorem 2. The second part
discusses the different variants of Com-GA-PAKE` and analyzes their security.

E.1 Proof of Theorem 2

For the convenience of the reader, we repeat the statement of the theorem.

Theorem 2 (Security of Com-GA-PAKE`). For any adversary A against Com-GA-
PAKE` that issues at most qe execute queries, qs send queries and at most qG and qH
queries to random oracles G and H, there exist an adversary B1 against GA-StCDH and
an adversary B2 against GA-GapCDH such that

AdvCom-GA-PAKE`(A) ≤ AdvGA-StCDH
EGAT (B1) + qs` ·

√
AdvGA-GapCDH

EGAT (B2) + (qs + qe)2

|G|`
+ qGqs
|G|`

+ 2 · (qG + qs + qe)2

2λ + qs
|PW|

,

where λ is the output length of G in bits.

Before proving this theorem, we will introduce a new (interactive) computational
assumption which is tailored to the protocol where the interactive part of the assumption
reflects the commitment in that protocol. We will show that this assumption is implied
by GA-GapCDH.
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Definition 15 (Interactive Simultaneous GA-StCDH (ISim-GA-StCDH)). On input
(x0, x1) = (g0?x̃, g1?x̃) ∈ X 2, the adversary first chooses and commits to some y ∈ X . Af-
ter receiving the challenge x = g?x̃ ∈ X , the ISim-GA-StCDH problem requires to compute
y0 = gg−1

0 ? y, y1 = gg−1
1 ? y. For a group action XXX ∈ {EGA,REGA,EGAT,REGAT},

we define the advantage function of an adversary A as

AdvISim-GA-StCDH
XXX (A) := Pr


y0 = GA-CDHx0(x, y)
y1 = GA-CDHx1(x, y)

∣∣∣∣∣∣∣∣∣∣∣∣

(g0, g1) $← G2

(x0, x1) = (g0 ? x̃, g1 ? x̃)
y ← AO1(x0, x1)

g $← G
x = g ? x̃

(y0, y1)← AO1,O2(x)

 ,

where O1 = {GA-DDHxj (x̃, ·, ·)}j∈{0,1} and O2 = {GA-DDHxj (x, ·, ·)}j∈{0,1}.

Note that ISim-GA-StCDH would be easy without the commitment if a group action
allows to compute twists efficiently. In this case an adversary could simply choose
(y, y0, y1) = (xt, xt0, xt1). The commitment prevents this trivial solution and intuitively,
it thwarts the offline dictionary attack that was possible on GA-PAKE` (Proposition 1).

Lemma 4. The Group Action Gap Computational Diffie-Hellman Problem (GA-
GapCDH) problem implies the Interactive Simultaneous GA-StCDH (ISim-GA-StCDH)
for EGATs, in particular

AdvISim-GA-StCDH
EGAT (A) ≤

√
AdvGA-GapCDH

EGAT (B) .

Proof. For the proof we use the reset lemma (see Lemma 2) with H = X . Let A be
an adversary against ISim-GA-StCDH. Consider adversary B against GA-GapCDH in
Figure 18 that takes input (x0, x1) as well as x. It also has access to a gap oracle
GA-DDH∗. First, B runs A on (x0, x1) to receive a commitment y. Now B sends x
to A and A will finally output (y0, y1). B checks if the solution is correct using the
decision oracle and if this is the case, it outputs b = 1 and σ = (y, y0, y1). Otherwise it
outputs (0, ε). As B has access to a full gap oracle, it can forward all queries of A.

Let IG be the algorithm that chooses g0, g1
$← G and outputs (x0, x1) = (g0?x̃, g1?x̃).

Let acc be defined as in Lemma 2, thus

acc ≥ AdvISim-GA-StCDH
EGAT (A) .

Let RB be the reset algorithm associated to B as in Lemma 2 with access to the same
decision oracles as B.

We construct an adversary C against GA-GapCDH (Figure 18), but instead of running
the reset algorithm, C will simulate RB running B directly.
C inputs (x0, x1) and has access to a gap oracle. First, it chooses random coins

ρ for B. It also samples a random element from H by first picking a $← G and then
computing x = a ? x̃. Then it runs B on (x0, x

t
1, x; ρ). Note that we use the twist of

x1. B outputs a bit b and side output σ. If B was successful, i.e., b = 1, then C parses
σ as (y, y1, y2). Otherwise it aborts. Now it runs B a second time, this time on input

281



M. Abdalla, T. Eisenhofer, E. Kiltz, S. Kunzweiler, and D. Riepel

BGA-DDH∗(x0, x1, x)
00 y ← AO1 (x0, x1)
01 (y0, y1)← AO1,O2 (x)
02 if GA-DDHx0 (x, y, y0) = 1

and GA-DDHx1 (x, y, y1) = 1
03 return (1, (y, y0, y1))
04 return (0, ε)

CGA-DDH∗(x0, x1)
05 Pick random coins ρ for B
06 a $← G; x := a ? x̃
07 (b, σ)← BGA-DDH∗(x0, x

t
1, x; ρ)

08 if b = 0 return ⊥
09 (y, y0, y1) := σ
10 α $← G; x′ := α ? yt0
11 (b′, σ′)← BGA-DDH∗(x0, x

t
1, x
′; ρ)

12 if b = 0 return ⊥
13 (y, y′0, y′1) := σ
14 return α−1 · a ? y′1

Figure 18: Adversaries B and C against GA-GapCDH for the proof of Lemma 4.
Adversary A has access to decision oracles O1 = {GA-DDHxj (x̃, ·, ·)}j∈{0,1} and
O2 = {GA-DDHxj (x, ·, ·)}j∈{0,1}, which B simulates using the gap oracle GA-DDH∗.

(x0, x
t
1, x
′), where x′ = α ? yt0 for some α $← G, and the same random coins ρ. Note that

x′ is also uniformly distributed over X . If B is successful again, it outputs (1, (y, y′0, y′1)),
where y is the same as before since we run B on the same random coins. Now C can
solve GA-GapCDH as follows: Let y = h ? x̃ for some h ∈ G. Then we have

α ? yt0 = (α · a−1g0h
−1) ? x̃,

hence y′0 = (α · a−1) ? x̃, y′1 = (α · a−1 · g0 · g1 ? x̃). Note that h cancels out. Using the
knowledge of a and α, C can compute α−1 · a ? y′1 = GA-CDH(x0, x1).

Note that even if x = x′, we can solve GA-GapCDH, so there is no additional term
in the bound.

Note that for the above proof it is indeed necessary that B (and C) has access to a full
gap oracle. If B only had access to a restricted oracle, it would not be able to simulate
the oracles GA-DDHx0(α ? yt0, ·, ·) and GA-DDHxt1

(α ? yt0, ·, ·) in the second part of
the proof.

Now we give the full proof of Theorem 2.

Proof (of Theorem 2). Let A be an adversary against Com-GA-PAKE`. Consider the
games in Figures 19 and 20.
Game G0. This is the original game, hence

AdvCom-GA-PAKE`(A) ≤ |Pr[G0 ⇒ 1]− 1/2| .

Game G1. In game G1, we raise flag badcoll whenever a server instance computes the
same trace as any other accepted instance (line 77) or a user instance computes the
same trace as any other accepted user instance (line 33). In this case, SendTermInit or
SendTermResp return ⊥. We do the same if a trace that is computed in an Execute
query collides with one of a previously accepted instance (line 20). Due to the difference
lemma,

|Pr[G1 ⇒ 1]− Pr[G0 ⇒ 1]| ≤ Pr[badcoll] .
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GAMES G0-G7
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, TH, TG) := (∅, ∅)
03 (badcoll,badbind,badhide) := (false, false, false)
04 β $← {0, 1}
05 for (U, S) ∈ U × S
06 pwUS

$← PW
07 β′ ← AO(x0, x1)
08 return Jβ = β′K

Execute(U, t0,S, t1)
09 if πt0U 6= ⊥ or πt1S 6= ⊥ return ⊥
10 (b1, ..., b`) := pwUS �G0-G6
11 (u1, ..., u`) $← G`
12 (s1, ..., s`) $← G`
13 xU := (xU

1 , ..., x
U
` ) := (u1 ? xb1 , ..., u` ? xb`) �G0-G6

14 xS := (xS
1, ..., x

S
`) := (s1 ? xb1 , ..., s` ? xb`) �G0-G6

15 z := (z1, ..., z`) := (u1 ? x
S
1, ..., u` ? x

S
`) �G0-G6

16 xU := (xU
1 , ..., x

U
` ) := (u1 ? x̃, ..., u` ? x̃) �G7

17 xS := (xS
1, ..., x

S
`) := (s1 ? x̃, ..., s` ? x̃) �G7

18 com := G(xS)
19 if ∃P ∈ U ∪ S, t′ s. t. πt

′
P .tr = (U,S, xU, xS, com) �G1-G7

20 badcoll := true; return ⊥ �G1-G7
21 K := H(U, S, xU, xS, com, pwUS, z) �G0-G5
22 K $← K �G6-G7
23 πt0U := ((u1, ..., u`), (U, S, xU, xS, com),K, true)
24 πt1S := ((s1, ..., s`), (U, S, xU, xS, com),K, true)
25 (πt0U .fr, π

t1
S .fr) := (true, true) �G5-G7

26 return (U, xU, S, (com, xS))

SendTermResp(U, t, S, xS)
27 if πtU 6= ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)
28 return ⊥
29 if G(xS) 6= com
30 πtU := ((u1, ..., u`), (U, S, xU, xS, com),⊥, false)
31 return ⊥
32 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U,S, xU, xS, com) �G1-G7

33 badcoll := true; return ⊥ �G1-G7

34 if ∃t′ s. t. πt
′

S .tr = (U, S, xU, xS, com)
and πt

′
S .fr = true �G5-G7

35 πtU.fr := true �G5-G7
36 else if (U, S) /∈ C �G5-G7
37 πtU.fr := true �G5-G7
38 else �G5-G7
39 πtU.fr := false �G5-G7
40 z := (z1, ..., z`) := (u1 ? x

S
1, ..., u` ? x

S
`)

41 K := H(U,S, xU, xS, com, pwUS, z)
42 πtU := ((u1, ..., u`), (U, S, xU, xS, com),K, true)
43 return true

SendInit(S, t,U)
44 if πtS 6= ⊥ return ⊥
45 (b1, ..., b`) := pwUS
46 (s1, ..., s`) $← G` �G0-G2
47 xS := (xS

1, ..., x
S
`) := (s1 ? xb1 , ..., s` ? xb`) �G0-G2

48 com := G(xS) �G0-G2
49 πtS := ((s1, ..., s`), (U,S,⊥, xS, com),⊥,⊥) �G0-G2
50 com $← {0, 1}λ �G3-G7
51 if ∃xS s. t. TG[xS] = com �G3-G7
52 return ⊥ �G3-G7
53 TG[�] := com �G3-G7
54 πtS := (⊥, (U, S,⊥,⊥, com),⊥,⊥) �G3-G7
55 πtS.fr := false �G5-G7
56 return (S, com)

SendResp(U, t, S, com)
57 if πtU 6= ⊥ return ⊥
58 if @xS s. t. TG[xS] = com �G4-G7
59 πtU.acc := false �G4-G7
60 (b1, ..., b`) := pwUS
61 (u1, ..., u`) $← G`
62 xU := (xU

1 , ..., x
U
` ) := (u1 ? xb1 , ..., u` ? xb`)

63 πtU := ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)
64 πtU.fr := false �G5-G7
65 return (U, xU)

SendTermInit(S, t,U, xU)
66 if πtS 6= ((s1, ..., s`), (U, S,⊥, xS, com),⊥,⊥) �G0-G2
67 return ⊥ �G0-G2
68 if πtS 6= (⊥, (U,S,⊥,⊥, com),⊥,⊥) �G3-G7
69 return ⊥ �G3-G7
70 (b1, ..., b`) := pwUS
71 (s1, ..., s`) $← G` �G3-G7
72 xS := (xS

1, ..., x
S
`) := (s1 ? xb1 , ..., s` ? xb`) �G3-G7

73 if TG[xS] 6= ⊥ �G3-G7
74 badhide := true; return ⊥ �G3-G7
75 Replace � in TG[�] := com with xS �G3-G7

76 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U,S, xU, xS, com) �G1-G7
77 badcoll := true �G1-G7
78 return ⊥ �G1-G7
79 if (U,S) /∈ C �G5-G7
80 πtS.fr := true �G5-G7
81 else �G5-G7
82 πtS.fr := false �G5-G7
83 z := (z1, ..., z`) := (s1 ? x

U
1 , ..., s` ? x

U
` )

84 K := H(U, S, xU, xS, com, pwUS, z)
85 πtS := ((s1, ..., s`), (U, S, xU, xS, com),K, true)
86 return (S, xS)

Figure 19: Games G0-G7 for the proof of Theorem 2. A has access to oracles
O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,
G,H}. Oracles Corrupt,Reveal,Test,G and H are defined in Figure 20.

Note that when badcoll is not raised, each instance is unique and has at most one
partner. In order to bound badcoll, recall that the trace of an oracle πtP consists of
(U,S, xU = (xU

1 , ..., x
U
` ), xS = (xS

1, ..., x
S
` ), com), where the user message consists of xU

and the server messages consist of (xS, com). When the game chooses xU, then the
probability that it collides with one particular other user instances is |G|−` as all group
elements must be the same. On the server side, the commitment is determined by the
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Corrupt(U, S)
00 if (U, S) ∈ C return ⊥
01 for P ∈ {U, S}
02 if ∃t s. t. πtP.test = true

and @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt
′

P′) = 1
03 return ⊥
04 ∀πtP : if @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt

′

P′) = 1 �G5-G7
05 πtP.fr = false �G5-G7
06 C := C ∪ {(U, S)}
07 return pwUS

Reveal(P, t)
08 if πtP.acc 6= true or πtP.test = true
09 return ⊥
10 if ∃P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt

′

P′) = 1
and πt

′

P′ .test = true
11 return ⊥
12 ∀(P′, t′) s. t. πt

′

P′ .tr = πtP.tr �G5-G7

13 πt
′

P′ .fr := false �G5-G7
14 return πtP.K

Test(P, t))
15 if Fresh(πtP) = false return ⊥ �G0-G4
16 if πtP.fr = false return ⊥ �G5-G7
17 K∗0 := Reveal(P, t)
18 if K∗0 = ⊥ return ⊥
19 K∗1

$← K
20 πtP.test := true
21 return K∗β

G(xS)
22 if TG[xS] = com 6= ⊥
23 return com
24 TG[xS] $← {0, 1}λ

25 if ∃xS′ s. t. TG[xS′] = TG[xS] �G2-G7
26 badbind := true; return ⊥ �G2-G7
27 return TG[xS]

H(U,S, xU, xS, com, pw, z)
28 if TH[U, S, xU, xS, com, pw, z] = K 6= ⊥
29 return K
30 TH[U,S, xU, xS, com, pw, Z] $← K
31 return TH[U, S, xU, xS, com, pw, z]

Figure 20: Oracles Corrupt,Reveal,Test,G and H for games G0-G7 in Figure 19.

choice of xS and when the game chooses xS , then the probability that this instance
collides with one particular other server instances is |G|−` as well. As there are at most
qs + qe queries, this yields

Pr[badcoll] ≤
(
qs + qe

2

)
· 1
|G|`
≤ (qs + qe)2

|G|`
.

Game G2. In G2 we raise flag badbind if two different inputs to the random oracle G
return the same commitment (line 26). This is to ensure that the adversary cannot
open a commitment to a different value, which might depend on previous messages.
The number of queries to G is bounded by qG + qs + qe, thus we have

|Pr[G2 ⇒ 1]− Pr[G1 ⇒ 1]| ≤ Pr[badbind] ≤ (qG + qs + qe)2

2λ .

Game G3. In G3 we choose the commitment uniformly at random when a session
is initiated with a SendInit query (line 50). Then we can choose xS only later in
SendTermInit (line 71). However, we have to take into account some subtleties.

First, in the previous games we ensured that traces are unique and also the same
commitment is not chosen twice. In this case G would have returned ⊥ in G2, so now we
take care of this explicitly in SendInit. In particular, we also return ⊥ whenever there
already exists an entry in TG that evaluates to the commitment chosen in SendInit
(line 52). We add an entry to TG with a placeholder � as input (line 53) to avoid that
the commitment is chosen again. (Essentially, the checks in lines 25 and 51 also consider
xS = �.) Also we can now only save the commitment in the trace (line 54) and will
adapt the initial check in SendTermInit (line 68).

Second, we have to take care of the case that the adversary has already issued a
query to G on xS before these values are chosen in SendTermInit because then we
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cannot assign com to this input. We cover this in event badhide (line 74). If badhide
does not happen, we can overwrite the entry with the placeholder in TG with the correct
input (line 75).

Note that A can only distinguish these changes if badhide occurs. The probability
that badhide occurs for one particular instance can be bounded by qG

|G|` since xS is fresh.
For at most qs instances, this yields

|Pr[G3 ⇒ 1]− Pr[G2 ⇒ 1]| ≤ Pr[badhide] ≤
qGqs
|G|`

.

Game G4. Whenever A sends a commitment com in G4 which was not computed using
G, i.e., there does not exist an entry xS in TG such that TG[xS] = com, we expect that
this instance will reject the key and we immediately set the acc flag to false (line 59).
Although SendResp will still output the first message, as soon as SendTermResp is
queried, the game will return ⊥ as the initial check will fail (line 27).

This change is only observable if A finds a correct input to G after it has sent the
commitment. Then the instance will accept the key in G3, but not in G4. As there are at
most qG + qs + qe queries to G and qs instances, we can upper bound the difference by

|Pr[G4 ⇒ 1]− Pr[G3 ⇒ 1]| ≤ (qG + qs + qe)qs
2λ .

Game G5. In game G5, we make the freshness explicit. To each oracle πtP, we assign an
additional variable πtP.fr which is updated during the game. In particular, all instances
used in execute queries are marked as fresh (line 25).

A server instance is fresh if the password was not corrupted yet (line 80). Otherwise,
it is not fresh (line 82). A user instance is fresh if it has a fresh partner instance (line
35) or the password was not corrupted yet (line 37). Otherwise, it is not fresh (line 39).
If A issues a Corrupt query later, the freshness variable will also be updated (line
05). When the session key of an instance is revealed, this instance and its potential
partner instance are marked as not fresh (line 13). On a query to test, the game then
only checks the freshness variable (line 16).

These are only a conceptual changes, hence

Pr[G5 ⇒ 1] = Pr[G4 ⇒ 1] .

Game G6. In game G6, we choose random keys for all instances queried to Execute
(line 22). We construct adversary B1 against GA-StCDH in Figure 21 and show that

|Pr[G6 ⇒ 1]− Pr[G5 ⇒ 1]| ≤ AdvGA-StCDH
EGAT (B1) .

Adversary B1 inputs a GA-StCDH challenge (x, y) = (g ? x̃, h ? x̃) and has access
to a decision oracle GA-DDH(x, ·, ·). First, it generates the crs elements (x0, x1) as in
game G6 and then runs adversary A. Queries to Execute are simulated as follows: For
i ∈ [`] it chooses random group elements ui and si for user and server instances, but
instead of using (x0, x1) to compute the set elements, B1 uses x for the user instance
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BGA-DDH(x,·,·)
1 (x, y)

00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, TH, TG) := (∅, ∅)
03 β $← {0, 1}
04 for (U, S) ∈ U × S
05 pwUS

$← PW
06 β′ ← AO(x0, x1)
07 Stop.

H(U, S, xU, xS, com, pw, z)
08 if ∃(u1, ..., u`, s1, ..., s`) s. t.

(U, S, xU, xS, com, pw, u1, ..., u`, s1, ..., s`) ∈ Te
09 (b1, ..., b`) := pw
10 for i ∈ [`]
11 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi) = 1

12 Stop with (u−1
i · s

−1
i · gbi) ? zi

13 if TH[U, S, xU, xS, com, pw, z] = K 6= ⊥
14 return K
15 TH[U, S, xU, xS, com, pw, Z] $← K
16 return TH[U, S, xU, xS, com, pw, z]

Execute(U, t0, S, t1)
17 if πt0U 6= ⊥ or πt1S 6= ⊥
18 return ⊥
19 (b1, ..., b`) := pwUS
20 (u1, ..., u`) $← G`
21 (s1, ..., s`) $← G`
22 xU := (xU

1 , ..., x
U
` ) := (u1 ? x, ..., u` ? x)

23 xS := (xS
1, ..., x

S
`) := (s1 ? y, ..., s` ? y)

24 com := G(xS)
25 if ∃P ∈ U ∪ S, t′ s. t. πt

′
P .tr = (U, S, xU, xS, com)

26 return ⊥
27 ∀z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH
28 for i ∈ [`]
29 if GA-DDH(x, xS

i , (u−1
i · gbi) ? zi) = 1

30 Stop with (u−1
i · s

−1
i · gbi) ? zi

31 Te := Te ∪ {U, S, xU, xS, com, pwUS, u1, ..., u`, s1, ..., s`}
32 K $← K
33 πt0U := ((u1, ..., u`), (U,S, xU, xS, com),K, true)
34 πt1S := ((s1, ..., s`), (U, S, xU, xS, com),K, true)
35 (πt0U .fr, π

t1
S .fr) := (true, true)

36 return (U, xU, S, (com, xS))

Figure 21: Adversary B1 against GA-StCDH for the proof of Theorem 2. A has access to
oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,
Test,G,H}. Oracles SendInit, SendResp, SendTermInit, Reveal, Corrupt,
Test and G are defined as in G5. Lines written in blue show how B1 simulates the game.

(line 22) and y for the server instance (line 23), independent of the password bits bi.
We can rewrite this as

xU
i = ui ? x = (ui · g) ? x̃ = (ui · g · gbi · g−1

bi
) ? x̃ = (ui · g · g−1

bi
)︸ ︷︷ ︸

u′
i

?xbi ,

where u′i is the group element that the user actually needs to compute the session key.
In the same way, s′i = si · h · g−1

bi
. Note that zi is implicitly set to

zi = (u′i · s′i) ? xbi = ui · g · si · h · g−1
bi

? x̃ . (2)

We want to choose a random session key now, but before that we check if there has
been a query to the random oracle H that matches the session key (lines 27-30). We
iterate over the entries in TH, where U, S, xU, xS and pwUS match, and check if one of
the entries in z is correct. More precisely, for all i ∈ [`], we check whether

GA-CDH(x, xS
i ) = (u−1

i · gbi) ? zi ⇔ GA-CDH(xU
i , x

S
i ) = gbi ? zi

⇔ GA-CDHxbi (x
U
i , x

S
i ) = zi

using the decision oracle GA-DDH(x, ·, ·).
If one zi is correct, B1 aborts and outputs the solution (u−1

i ·s
−1
i ·gbi)?zi = (g ·h)? x̃

(cf. Equation (2)).
Otherwise, we store the values ui and si in list Te together with the trace and the

password (line 31) and choose a session key uniformly at random. We need list Te to
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identify relevant queries to H. In particular, if the trace and password appear in a query,
we retrieve the values ui and si to check whether the provided zi are correct. We do
this in the same way as described above using the decision oracle (lines 08-12). If the
oracle returns 1 for any i, B1 aborts and outputs (u−1

i · s
−1
i · gbi) ? zi.

Game G7. In game G7, we remove the password from execute queries. In particular, we
do not compute xU and xS to the basis xbi , but simply use x̃ (lines 16, 17). Note that
the values have the same distribution as in the previous game. Also, the group elements
u and s are not used to derive the key. Hence, this change is not observable by A and

Pr[G7 ⇒ 1] = Pr[G6 ⇒ 1] .

Game G8. G8 is given in Figure 22. In this game we want to replace the session keys by
random for all fresh instances in oracles SendTermInit and SendTermResp (lines
57, 79). Therefore, we introduce an additional independent random oracle Ts which
maps only the trace of an instance to a key (lines 58, 80). We keep partner instances
consistent, i.e., in case the adversary queries SendTermResp for a user instance and
there exists a fresh partner instance, then we look in Ts for the corresponding key and
assign it to this instance as well (line 74). For all instances that are not fresh, we simply
compute the correct key using random oracle H (lines 61-62, 83-84). If a session is fresh
and there is an inconsistency between TH and Ts, we raise flag bad. This happens in
the following cases:
– a server instance is about to compute the session key, the password was not corrupted,

but there already exists an entry in TH with the correct password and z (lines 55-56).
– a user instance is about to compute the session key, there exists no partner instance
and the password was not corrupted, but there already exists an entry in TH with
the correct password and z (lines 77-78).

– the random oracle is queried on some trace that appears in Ts together with the
correct password and z (lines 02-11). At this point, we also check if the password
was corrupted in the meantime and if this is the case and the adversary issues
the correct query, we simply output the key stored in Ts (line 09) as this instance
cannot be tested. This case corresponds to perfect forward secrecy which we cover
in Appendix F.3.

Note that when bad is not raised, there is no difference between G7 and G8. Hence,

|Pr[G8 ⇒ 1]− Pr[G7 ⇒ 1]| ≤ Pr[G8 ⇒ bad] .

Game G9. G9 is given in Figure 24. In this game we remove the password from send
queries and generate passwords as late as possible, that is either when the adversary
issues a corrupt query (line 37) or after it has stopped with output β′ (line 07). In
SendResp and SendTermInit we still choose group elements ui and si uniformly at
random, but now compute xU

i and xS
i using the origin element (line 26 and 42). Thus,

depending on which password is chosen afterwards, we implicitly set

xU
i = ui · x̃ = (ui · g−1

0 ) ? x0 = (ui · g−1
1 ) ? x1
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GAMES G8
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, TH, TG) := (∅, ∅)
03 β $← {0, 1}
04 for (U, S) ∈ U × S
05 pwUS

$← PW
06 β′ ← AO(x0, x1)
07 return Jβ = β′K

Execute(U, t0, S, t1)
08 if πt0U 6= ⊥ or πt1S 6= ⊥
09 return ⊥
10 (u1, ..., u`) $← G`
11 (s1, ..., s`) $← G`
12 xU := (xU

1 , ..., x
U
` ) := (u1 ? x̃, ..., u` ? x̃)

13 xS := (xS
1, ..., x

S
`) := (s1 ? x̃, ..., s` ? x̃)

14 com := G(xS)
15 if ∃P ∈ U ∪ S, t′ s. t. πt

′
P .tr = (U, S, xU, xS, com)

16 return ⊥
17 K $← K
18 πt0U := ((u1, ..., u`), (U, S, xU, xS, com),K, true)
19 πt1S := ((s1, ..., s`), (U,S, xU, xS, com),K, true)
20 (πt0U .fr, π

t1
S .fr) := (true, true)

21 return (U, xU,S, (com, xS))

SendInit(S, t,U)
22 if πtS 6= ⊥ return ⊥
23 (b1, ..., b`) := pwUS
24 com $← {0, 1}λ
25 if ∃xS s. t. TG[xS] = com return ⊥
26 TG[�] := com
27 πtS := (⊥, (U, S,⊥,⊥, com),⊥,⊥)
28 πtS.fr := false
29 return (S, com)

SendResp(U, t, S, com)
30 if πtU 6= ⊥ return ⊥
31 if @xS s. t. TG[xS] = com
32 πtU.acc := false
33 (b1, ..., b`) := pwUS
34 (u1, ..., u`) $← G`
35 xU := (xU

1 , ..., x
U
` ) := (u1 ? xb1 , ..., u` ? xb`)

36 πtU := ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)
37 πtU.fr := false
38 return (U, xU)

G(xS)
39 if TG[xS] = com 6= ⊥ return com
40 TG[xS] $← {0, 1}λ

41 if ∃xS′ s. t. TG[xS′] = TG[xS] return ⊥
42 return TG[xS]

SendTermInit(S, t,U, xU)
43 if πtS 6= (⊥, (U, S,⊥,⊥, com),⊥,⊥)
44 return ⊥
45 (b1, ..., b`) := pwUS
46 (s1, ..., s`) $← G`
47 xS := (xS

1, ..., x
S
`) := (s1 ? xb1 , ..., s` ? xb`)

48 if TG[xS] 6= ⊥
49 return ⊥
50 Replace � in TG[�] := com with xS

51 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, xS, com)
52 return ⊥
53 if (U,S) /∈ C
54 πtS.fr := true
55 if ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH

and zi = si ? x
U
i ∀i ∈ [`]

56 bad := true
57 K $← K
58 Ts[U, S, xU, xS, com] := (S, (s1, ..., s`),K)
59 else
60 πtS.fr := false
61 z := (z1, ..., z`) := (s1 ? x

U
1 , ..., s` ? x

U
` )

62 K := H(U, S, xU, xS, com, pwUS, z)
63 πtS := ((s1, ..., s`), (U, S, xU, xS, com),K, true)
64 return (S, xS)

SendTermResp(U, t, S, xS)
65 if πtU 6= ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)
66 return ⊥
67 if G(xS) 6= com
68 πtU := ((u1, ..., u`), (U,S, xU, xS, com),⊥, false)
69 return ⊥
70 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U,S, xU, xS, com)

71 return ⊥
72 if ∃t′ s. t. πt

′
S .tr = (U,S, xU, xS, com)

and πt
′

S .fr = true
73 πtU.fr := true
74 (S, (s1, ..., s`),K) := Ts[U, S, xU, xS, com]
75 else if (U, S) /∈ C
76 πtU.fr := true
77 if ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH

and zi = ui ? x
S
i ∀i ∈ [`]

78 bad := true
79 K $← K
80 Ts[U,S, xU, xS, com] := (U, (u1, ..., u`),K)
81 else
82 πtU.fr := false
83 z := (z1, ..., z`) := (u1 ? x

S
1, ..., u` ? x

S
`)

84 K := H(U, S, xU, xS, com, pwUS, z)
85 πtU := ((u1, ..., u`), (U,S, xU, xS, com),K, true)
86 return true

Figure 22: Game G8 for the proof of Theorem 2. A has access to oracles
O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,
G,H}. Oracles Reveal, Corrupt and Test are defined as in Figure 19. Random
oracle H is defined in Figure 23. Differences to game G7 are highlighted in blue.
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H(U, S, xU, xS, com, pw, z) �G8

00 if TH[U, S, xU, xS, com, pw, z] = K 6= ⊥
01 return K
02 if (U, S, xU, xS, com) ∈ Ts and pw = pwUS
03 if Ts[U, S, xU, xS, com] = (U, u1, ..., u`,K)
04 z′ := (z′1, ..., z′`) := (u1 ? x

S
1, ..., u` ? x

S
`)

05 if Ts[U, S, xU, xS, com] = (S, s1, ..., s`,K)
06 z′ := (z′1, ..., z′`) := (s1 ? x

U
1 , ..., s` ? x

U
` )

07 if z = z′

08 if (U,S) ∈ C
09 return K
10 if (U,S) /∈ C
11 bad := true
12 TH[U, S, xU, xS, com, pw, Z] $← K
13 return TH[U,S, xU, xS, com, pw, z]

H(U,S, xU, xS, com, pw, z) �G9

14 if TH[U,S, xU, xS, com, pw, z] = K 6= ⊥
15 return K
16 if (U,S, xU, xS, com) ∈ Ts
17 (b1, ..., b`) := pw
18 if Ts[U, S, xU, xS, com] = (U, u1, ..., u`,K)
19 z′ := (z′1, ..., z′`) := ((u1 ·g−1

b1
)?xS

1, ..., (u` ·g−1
b`

)?xS
`)

20 if Ts[U,S, xU, xS, com] = (S, s1, ..., s`,K)
21 z′ := (z′1, ..., z′`) := ((s1 ·g−1

b1
)?xU

1 , ..., (s` ·g−1
b`

)?xU
` )

22 if z = z′

23 if (U, S) ∈ C and pw = pwUS
24 return K
25 if (U, S) /∈ C
26 Tbad := Tbad ∪ {U,S, xU, xS, com, pw, z}
27 TH[U,S, xU, xS, com, pw, Z] $← K
28 return TH[U, S, xU, xS, com, pw, z]

Figure 23: Random oracle H for games G8 and G9 in Figures 22 and 24, respectively.

and analogously for xS
i . For all instances that are not fresh, we have to compute the

real session key using zi = (si · g−1
bi

) ? xU
i (line 60) or zi = (ui · g−1

bi
) ? xS

i (line 86). Note
that the password is already defined for these instances.

Recall that event bad in game G8 is raised whenever there is an inconsistency in
the random oracle queries and the keys of fresh instances. In this game, we split event
bad into two different events:

• badpw captures the event that there exists more than one valid entry in TH for
the same trace of a fresh instance, but different passwords.

• badguess happens only if badpw does not happen and captures the event that
there exists a valid entry in TH for the trace of a fresh instance and the correct
password, where the password was not corrupted when the query to H was made.

To identify the different events, we introduce a new set Tbad. For all fresh instances
in SendTermInit and SendTermResp, we now iterate over all entries in TH that
contain the corresponding trace. We check if the given password and z are valid for this
trace by computing the real values z′ in the same way as for non-fresh instances. If
z = z′, we add this entry to the set Tbad (lines 50-54, 76-80). We essentially do the same
when the random oracle H is queried on a trace that appears in Ts. Here, the adversary
specifies the password and we check if z is valid for that password using the ui stored
in Ts for user instances and si for server instances. If z is valid and the instance is still
fresh, we add the query to Tbad (lines 16-26). In case the password was corrupted in the
meantime, we output the key stored in Ts as introduced in the previous game. After the
adversary terminates, we check Tbad whether event badpw (line 09) or event badguess
(line 12) occurred. We will bound these events below. First note that whenever bad is
raised in G8, then either flag badguess or badpw is raised in G9, thus

Pr[G8 ⇒ bad] ≤ Pr[G9 ⇒ badpw] + Pr[G9 ⇒ badguess] .

Finally, we bound the probabilities of the two events. We start with badpw. In Figures 25
and 26, we construct adversary B2 against ISim-GA-StCDH that simulates G9. We show
that when badpw occurs, then B2 can solve ISim-GA-StCDH. In the proof we need to
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GAMES G9
00 (g0, g1) $← G2

01 (x0, x1) := (g0 ? x̃, g1 ? x̃)
02 (C, TH, TG) := (∅, ∅)
03 (badguess,badpw) = (false, false)
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 for (U, S) ∈ U × S \ C
07 pwUS

$← PW
08 if ∃pw, pw′, (U,S, xU, xS, com, z, z′)

s. t. (U, S, xU, xS, com, pw, z) ∈ Tbad
and (U, S, xU, xS, com, pw′, z′) ∈ Tbad

09 badpw := true
10 else
11 if ∃U, S, xU, xS, com, z

s. t. (U, S, xU, xS, com, pwUS, z) ∈ Tbad
12 badguess := true
13 return Jβ = β′K

SendInit(S, t,U)
14 if πtS 6= ⊥ return ⊥
15 com $← {0, 1}λ
16 if ∃xS s. t. TG[xS] = com
17 return ⊥
18 TG[�] := com
19 πtS := (⊥, (U, S,⊥,⊥, com),⊥,⊥)
20 πtS.fr := false
21 return (S, com)

SendResp(U, t, S, com)
22 if πtU 6= ⊥ return ⊥
23 if @xS s. t. TG[xS] = com
24 πtU.acc := false
25 (u1, ..., u`) $← G`
26 xU := (xU

1 , ..., x
U
` ) := (u1 ? x̃, ..., u` ? x̃)

27 πtU := ((u1, ..., u`), (U,S, xU,⊥, com),⊥,⊥)
28 πtU.fr := false
29 return (U, xU)

Corrupt(U, S)
30 if (U,S) ∈ C return ⊥
31 for P ∈ {U,S}
32 if ∃t s. t. πtP.test = true

and @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt
′

P′) = 1
33 return ⊥
34 ∀πtP : if @P′ ∈ U ∪ S, t′ s. t. Partner(πtP, πt

′

P′) = 1
35 πtP.fr = false
36 C := C ∪ {(U, S)}
37 pwUS

$← PW
38 return pwUS

SendTermInit(S, t,U, xU)
39 if πtS 6= (⊥, (U, S,⊥,⊥, com),⊥,⊥)
40 return ⊥
41 (s1, ..., s`) $← G`
42 xS := (xS

1, ..., x
S
`) := (s1 ? x̃, ..., s` ? x̃)

43 if TG[xS] 6= ⊥
44 return ⊥
45 Replace � in TG[�] := com with xS

46 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, xS, com)
47 return ⊥
48 if (U, S) /∈ C
49 πtS.fr := true
50 ∀pw, z s. t. (U, S, xU, xS, com, pw, z) ∈ TH
51 (b1, ..., b`) := pw
52 z′ := ((s1 · g−1

b1
) ? xU

1 , ..., (s` · g−1
b`

) ? xU
` )

53 if z = z′

54 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
55 K $← K
56 Ts[U, S, xU, xS, com] := (S, (s1, ..., s`),K)
57 else
58 πtS.fr := false
59 (b1, ..., b`) := pwUS
60 z := (z1, ..., z`) := ((s1 · g−1

b1
) ? xU

1 , ..., (s` · g−1
b`

) ? xU
` )

61 K := H(U, S, xU, xS, com, pwUS, z)
62 πtS := ((s1, ..., s`), (U, S, xU, xS, com),K, true)
63 return (S, xS)

SendTermResp(U, t, S, xS)
64 if πtU 6= ((u1, ..., u`), (U,S, xU,⊥, com),⊥,⊥)
65 return ⊥
66 if G(xS) 6= com
67 πtU := ((u1, ..., u`), (U,S, xU, xS, com),⊥, false)
68 return ⊥
69 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U,S, xU, xS, com)

70 return ⊥
71 if ∃t′ s. t. πt

′
S .tr = (U,S, xU, xS, com)

and πt
′

S .fr = true
72 πtU.fr := true
73 (S, (s1, ..., s`),K) := Ts[U, S, xU, xS, com]
74 else if (U, S) /∈ C
75 πtU.fr := true
76 ∀pw, z s. t. (U, S, xU, xS, com, pw, z) ∈ TH
77 (b1, ..., b`) := pw
78 z′ := ((u1 · g−1

b1
) ? xS

1, ..., (u` · g−1
b`

) ? xS
`)

79 if z = z′

80 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
81 K $← K
82 Ts[U,S, xU, xS, com] := (S, (s1, ..., s`),K)
83 else
84 πtU.fr := false
85 (b1, ..., b`) := pwUS
86 z := (z1, ..., z`) := ((u1 · g−1

b1
) ? xS

1, ..., (u` · g−1
b`

) ? xS
`)

87 K := H(U,S, xU, xS, com, pwUS, z)
88 πtU := ((u1, ..., u`), (U,S, xU, xS, com),K, true)
89 return true

Figure 24: Game G9 for the proof of Theorem 2. A has access to oracles
O := {Execute,SendInit,SendResp,SendTermInit,Reveal,Corrupt,Test,
G,H}. Oracles Reveal and Test are defined as in game G7 in Figure 19. Oracles
Execute and G are defined as in Figure 22. Oracle H is defined in Figure 23. Differ-
ences to game G8 are highlighted in blue.

290



Password-Authenticated Key Exchange from Group Actions

guess the instance and the password bit for which badpw happens. Hence,

Pr[G9 ⇒ badpw] ≤ qs` · AdvISim-GA-StCDH
EGAT (B2) .

Recall that in the ISim-GA-StCDH problem, B2 must commit to some y ∈ X to receive
the challenge x = g ? x̃ for g $← G. Thus, adversary B2 will first guess a send query τ∗
and a password bit i∗ for which it will solve the problem. On a high level, the simulation
of G9 for adversary A works as follows: on the τ∗-th send query, where A sends xP, B2
will output the i∗-th set element xP

i∗ as a commitment. It then embeds the challenge x
in the i∗’s set element which will be output to A. If in the end, A has issued two valid
queries to H for that trace, where the passwords differ in the i∗’s bit, B2 can solve the
ISim-GA-StCDH problem.

Let us now describe B2 in more detail. Adversary B2 inputs (x0, x1), where x0 = g0?x̃
and x1 = g1 ? x̃ for group elements g0, g1 ∈ G chosen uniformly at random. Adversary
B2 also has access to decision oracles GA-DDHx0(x̃, ·, ·), GA-DDHx1(x̃, ·, ·). It guesses
a send query τ∗ $← [qs] and a password bit i∗ $← [`] and then initializes a counter cnt
(lines 01-03), before it runs A on (x0, x1).

Apart from increasing the counter, queries to SendInit are simulated exactly as in
G9 as we do not choose any set elements here, but later in SendTermInit.

In SendResp, we also increase the counter and then we choose xU as in G9. Only if
this is the τ∗-th query and the commitment sent by A was output by G before, then B2
looks in the list TG to find the corresponding input xS and outputs xS

i∗ as commitment
y to receive the ISim-GA-StCDH challenge x = g ? x̃ (lines 30-33). It replaces the i∗-th
element in xU with x, implicitly defining ui∗ = g. In order to recognize where the
challenge was embedded, B2 marks the trace of this instance as the target trace tr∗
(lines 35-37). From now on, B2 also has access to decision oracles GA-DDHx0(x, ·, ·),
GA-DDHx1(x, ·, ·).

Queries to SendTermInit are simulated similarly (see Figure 26). After increasing
the counter, B2 computes xS and if this is the τ∗-th query, it outputs xU

i∗ as commitment
to receive x. xS

i∗ is then set to x, implicitly setting si∗ = g. B2 also marks the trace as
tr∗ (lines 05-11). Now B2 also needs to compute a session key. If the instance is fresh,
we must check if there already exists an entry in TH that causes an inconsistency. As in
G9, we iterate over all pw, z in TH that contain the trace of this instance (line 19). In
particular, we must check whether zi satisfies

zi = GA-CDHxbi (x
U
i , x

S
i ) = GA-CDHxbi (x

U
i , si ? x̃) ⇔ GA-CDHxbi (x̃, x

U
i ) = s−1

i ? zi ,

which we can do using the GA-DDH oracle and the equation on the right-hand side
(lines 24-26). When checking for an inconsistency of tr∗, we need to call the corresponding
additional oracle (where the challenge x is fixed) for the i∗-th element (lines 21-23). In
this case, we need to check if

zi∗ = GA-CDHxbi∗ (xU
i∗ , x

S
i∗) = GA-CDHxbi∗ (xU

i∗ , x) = GA-CDHxbi∗ (x, xU
i∗) .

If all zi are valid, then we add this entry to Tbad.
If the instance is not fresh, i.e., the password is corrupted, then we have to compute

the correct key. We check list TH for a valid entry z as explained above and if it exists, we
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BGA-DDHx0 (x̃,·,·),GA-DDHx1 (x̃,·,·)
2 (x0, x1)

00 (C, TH, TG) := (∅, ∅)
01 τ∗ $← [qs]
02 i∗ $← [`]
03 cnt := 0
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 for (U, S) ∈ U × S \ C
07 pwUS

$← PW
08 if ∃pw, pw′, (U,S, xU, xS, com, z, z′)

s. t. (U, S, xU, xS, com, pw, z) ∈ Tbad
and (U, S, xU, xS, com, pw′, z′) ∈ Tbad

09 if (U,S, xU, xS, com) = tr∗
10 (b1, ..., b`) := pw
11 (b′1, ..., b′`) := pw′
12 if bi∗ 6= b′i∗
13 W.l.o.g. bi∗ = 0, b′i∗ = 1
14 Stop with (zi∗ , z′i∗)

SendInit(S, t,U)
15 cnt := cnt + 1
16 if πtS 6= ⊥ return ⊥
17 com $← {0, 1}λ
18 if ∃xS s. t. TG[xS] = com
19 return ⊥
20 TG[�] := com
21 πtS := (⊥, (U, S,⊥,⊥, com),⊥,⊥)
22 πtS.fr := false
23 return (S, com)

SendResp(U, t, S, com)
24 cnt := cnt + 1
25 if πtU 6= ⊥ return ⊥
26 if @xS s. t. TG[xS] = com
27 πtU.acc := false
28 (u1, ..., u`) $← G`
29 xU := (xU

1 , ..., x
U
` ) := (u1 ? x̃, ..., u` ? x̃)

30 if cnt = τ∗ and πtU.acc 6= false
31 find xS s. t. TG[xS] = com
32 (xS

1, ..., x
S
`) := xS

33 Output y := xS
i∗ to receive challenge x

34 � From now on B2 also has access to
GA-DDHx0 (x, ·, ·), GA-DDHx1 (x, ·, ·)

35 xU
i∗ := x

36 ui∗ := ⊥
37 tr∗ = (U,S, xU,⊥, com)
38 πtU := ((u1, ..., u`), (U,S, xU,⊥, com),⊥,⊥)
39 πtU.fr := false
40 return (U, xU)

H(U, S, xU, xS, com, pw, z)
41 if TH[U,S, xU, xS, com, pw, z] = K 6= ⊥
42 return K
43 (b1, ..., b`) := pw
44 if (U,S, xU, xS, com) ∈ Ts
45 if Ts[U, S, xU, xS, com] = (U, (u1, ..., u`),K)
46 if (U, S, xU, xS, com) = tr∗
47 if GA-DDHxbi

(x̃, xS
i , u
−1
i ? zi) = 1 ∀i ∈ [`] \ {i∗}

and GA-DDHxbi∗
(x, xS

i∗ , zi∗) = 1
48 if (U, S) /∈ C
49 Tbad := Tbad ∪ {(U,S, xU, xS, com, pw, z)}
50 if (U, S) ∈ C and pw = pwUS
51 return K
52 else
53 if GA-DDHxbi

(x̃, xS
i , u
−1
i ? zi) = 1 ∀i ∈ [`]

54 if (U, S) /∈ C
55 Tbad := Tbad ∪ {(U,S, xU, xS, com, pw, z)}
56 if (U,S) ∈ C and pw = pwUS
57 return K
58 if Ts[U, S, xU, xS, com] = (S, (s1, ..., s`),K)
59 if (U, S, xU, xS, com) = tr∗
60 if GA-DDHxbi

(x̃, xU
i , s
−1
i ? zi) = 1 ∀i ∈ [`] \ {i∗}

and GA-DDHxbi∗
(x, xU

i∗ , zi∗) = 1
61 if (U,S) /∈ C
62 Tbad := Tbad ∪ {(U,S, xU, xS, com, pw, z)}
63 if (U,S) ∈ C and pw = pwUS
64 return K
65 else
66 if GA-DDHxbi

(x̃, xU
i , s
−1
i ? zi) = 1 ∀i ∈ [`]

67 if (U,S) /∈ C
68 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
69 if (U, S) ∈ C and pw = pwUS
70 return K
71 if ∃(u1, ..., u`) s. t. (U,S, xU, xS, com, pw, (u1, ..., u`)) ∈ TH
72 if (U, S, xU, xS, com) = tr∗
73 if GA-DDHxbi

(x̃, xS
i , u
−1
i ? zi) = 1 ∀i ∈ [`] \ {i∗}

and GA-DDHxbi∗
(x, xS

i∗ , zi∗) = 1
74 return TH[U, S, xU, xS, com, pw, (u1, ..., u`)]
75 else
76 if GA-DDHxbi

(x̃, xS
i , u
−1
i ? zi) = 1 ∀i ∈ [`]

77 return TH[U,S, xU, xS, com, pw, (u1, ..., u`)]
78 else if ∃(s1, ..., s`) s. t. (U,S, xU, xS, com, pw, (s1, ..., s`)) ∈ TH
79 if (U, S, xU, xS, com) = tr∗
80 if GA-DDHxbi

(x̃, xU
i , s
−1
i ? zi) = 1 ∀i ∈ [`] \ {i∗}

and GA-DDHxbi∗
(x, xU

i∗ , zi∗) = 1
81 return TH[U,S, xU, xS, com, pw, (s1, ..., s`)]
82 else
83 if GA-DDHxbi

(x̃, xU
i , s
−1
i ? zi) = 1 ∀i ∈ [`]

84 return TH[U,S, xU, xS, com, pw, (s1, ..., s`)]
85 TH[U, S, xU, xS, com, pw, Z] $← K
86 return TH[U,S, xU, xS, com, pw, z]

Figure 25: Adversary B2 against ISim-GA-StCDH for the proof of Theorem 2. A has
access to oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,
Corrupt,Test,G,H}. Oracles Execute,Reveal,Corrupt,Test and G are defined
as in G9. Oracles SendTermInit and SendTermResp are defined in Figure 26. Lines
written in blue show how B2 simulates the game.
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SendTermInit(S, t,U, xU)
00 cnt := cnt + 1
01 if πtS 6= (⊥, (U, S,⊥,⊥, com),⊥,⊥)
02 return ⊥
03 (s1, ..., s`) $← G`
04 xS := (xS

1, ..., x
S
`) := (s1 ? x̃, ..., s` ? x̃)

05 if cnt = τ∗

06 (xU
1 , ..., x

U
` ) := xU

07 Output y := xU
i∗ to receive challenge x

08 � From now on B2 also has access to
GA-DDHx0 (x, ·, ·), GA-DDHx1 (x, ·, ·)

09 xS
i∗ := x

10 si∗ := ⊥
11 tr∗ = (U,S, xU, xS, com)
12 if TG[xS] 6= ⊥
13 return ⊥
14 Replace � in TG[�] := com with xS

15 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, xS, com)
16 return ⊥
17 if (U, S) /∈ C
18 πtS.fr := true
19 ∀pw, z s. t. (U,S, xU, xS, com, pw, z) ∈ TH
20 (b1, ..., b`) := pw
21 if (U, S, xU, xS, com) = tr∗
22 if GA-DDHxbi

(x̃, xU
i , s
−1
i ?zi) = 1 ∀i ∈ [`]\{i∗}

and GA-DDHxbi∗
(x, xU

i∗ , zi∗) = 1
23 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
24 else
25 if GA-DDHxbi

(x̃, xU
i , s
−1
i ? zi) = 1 ∀i ∈ [`]

26 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
27 K $← K
28 Ts[U, S, xU, xS, com] := (S, (s1, ..., s`),K)
29 else
30 πtS.fr := false
31 (b1, ..., b`) := pwUS
32 if (U,S, xU, xS, com) = tr∗

and ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH
and GA-DDHxbi

(x̃, xU
i , s
−1
i ? zi) = 1 ∀i ∈ [`] \ {i∗}

and GA-DDHxbi∗
(x, xU

i∗ , zi∗) = 1
33 K := TH[U, S, xU, xS, com, pwUS, z]
34 else if ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH

and GA-DDHxbi
(x̃, xU

i , s
−1
i ? zi) = 1 ∀i ∈ [`]

35 K := TH[U, S, xU, xS, com, pwUS, z]
36 else
37 K $← K
38 TH[U, S, xU, xS, com, pwUS, (s1, ..., s`)] := K
39 πtS := ((s1, ..., s`), (U, S, xU, xS, com),K, true)
40 return (S, xS)

SendTermResp(U, t, S, xS)
41 cnt := cnt + 1
42 if πtU 6= ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)
43 return ⊥
44 if G(xS) 6= com
45 πtU := ((u1, ..., u`), (U, S, xU, xS, com),⊥, false)
46 return ⊥
47 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U, S, xU, xS, com)

48 return ⊥
49 if πtU.tr = tr∗
50 tr∗ := (U, S, xU, xS, com)
51 if ∃t′ s. t. πt

′
S .tr = (U, S, xU, xS, com)

and πt
′

S .fr = true
52 πtU.fr := true
53 (S, (s1, ..., s`),K) := Ts[U, S, xU, xS, com]
54 else if (U,S) /∈ C
55 πtU.fr := true
56 ∀pw, z s. t. (U,S, xU, xS, com, pw, z) ∈ TH
57 (b1, ..., b`) := pw
58 if (U, S, xU, xS, com) = tr∗
59 if GA-DDHxbi

(x̃, xS
i , u
−1
i ? zi) = 1 ∀i ∈ [`] \ {i∗}

and GA-DDHxbi∗
(x, xS

i∗ , zi∗) = 1
60 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
61 else
62 if GA-DDHxbi

(x̃, xS
i , u
−1
i ? zi) = 1 ∀i ∈ [`]

63 Tbad := Tbad ∪ {(U, S, xU, xS, com, pw, z)}
64 K $← K
65 Ts[U, S, xU, xS, com] := (U, (u1, ..., u`),K)
66 else
67 πtU.fr := false
68 (b1, ..., b`) := pwUS
69 if (U,S, xU, xS, com) = tr∗

and ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH
and GA-DDHxbi

(x̃, xS
i , u
−1
i ? zi) = 1 ∀i ∈ [`] \ {i∗}

and GA-DDHxbi∗
(x, xS

i∗ , zi∗) = 1
70 K := TH[U, S, xU, xS, com, pwUS, z]
71 else if ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH

and GA-DDHxbi
(x̃, xS

i , u
−1
i ? zi) = 1 ∀i ∈ [`]

72 K := TH[U, S, xU, xS, com, pwUS, z]
73 else
74 K $← K
75 TH[U, S, xU, xS, com, pwUS, (u1, ..., u`)] := K
76 πtU := ((u1, ..., u`), (U,S, xU, xS, com),K, true)
77 return true

Figure 26: Oracles SendTermInit and SendTermResp for adversary B2 in Figure 25.

assign this value to the session key (lines 32-35). Here we also must treat tr∗ accordingly.
Otherwise, we choose a random key and add a special entry to TH, which instead of z
contains the secret group elements si (lines 37, 38) so that we can patch the random
oracle later.

SendTermInit is simulated analogously, using the secret group elements ui. Here
we must first update tr∗ if necessary (line 50).
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Now we look at the random oracle queries to H (see Figure 25). If the trace is
contained in set Ts (line 44) which means the corresponding instance was fresh when
the send query was issued, we check if z is valid using the GA-DDH oracle. We do
this as described above, depending on whether it is a user or server instance (lines 45,
58) and depending on whether it is tr∗ (lines 46, 59) or not (lines 52, 65). In case z is
valid, we first check if the instance is still fresh (i.e., the password was not corrupted in
the meantime) and if this is the case, we add the query to Tbad (lines 49, 55, 62, 68).
Otherwise, if the password was corrupted and is specified in the query, we return the
session key stored in Ts (lines 51, 57, 64, 70).

Next, we check if the query matches a special entry in TH that was added in
SendTermInit or SendTermResp for a non-fresh instance, which means we have to
output the same key that was chosen before. Again, we can use the GA-DDH oracle
and differentiate between user and server instances (lines 71, 78) and tr∗(lines 72, 79).

After A terminates with output β′, B2 chooses the passwords which have not been
generated yet in a Corrupt query (line 07). Then we check for event badpw (line 08).
If badpw occurred, then there must be at least two entries in Tbad for the same trace
and different passwords pw and pw′ along with values z and z′. We check if this is the
case for the target trace tr∗ (line 09) and if the two passwords differ in the i∗-th bit
(line 12). In this case B2 will output zi∗ and z′i∗ for bi∗ = 0 and b′i∗ = 1 (line 14) or it
must swap the output. Otherwise, B2 aborts.

Recall that in case tr∗ belongs to a user instance, B2 committed on y = xS
i∗ and

embedded the challenge x in xU
i∗ . To solve the ISim-GA-StCDH problem, B2 needs to

compute

y0 = GA-CDHx0(x, y) = GA-CDHx0(xU
i∗ , x

S
i∗) = zi∗ if bi∗ = 0,

y1 = GA-CDHx1(x, y) = GA-CDHx1(xU
i∗ , x

S
i∗) = z′i∗ if b′i∗ = 1,

which is exactly what is stored in Tbad. If tr∗ belongs to a server instance, the analysis
works analogously.

Therefore, B2 is successful whenever its guesses are correct and A issues two queries
for the target trace and both password bits. This concludes the analysis of badpw.

Next, we analyze event badguess. Recall that badguess happens only if badpw does not
happen. Hence, for each instance there is at most one entry in Tbad and the size of Tbad
is at most qs. As all entries were added before the corresponding password was sampled,
the probability is bounded by

Pr[G9 ⇒ badguess] ≤
qs
|PW|

.

Finally, note that if none of the bad events happens in G9, all session keys output by
Test are uniformly random and the adversary can only guess β. Hence, Pr[G9 ⇒ 1] = 1

2 .
Collecting the probabilities and applying Lemma 4 yields the bound in Theorem 2.
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User U Server S

crs := (x0, ..., x2N−1) ∈ X 2N ,

pw := (b1, ..., b`/N ) ∈ {0, ..., 2N − 1}`/N

(s1, ..., sM ) $← G`/N

for i ∈ [`/N ]
xS
i := si ? xbi

(u1, ..., u`/N ) $← G`/N com = G(xS
1, . . . , x

S
`/N )

for i ∈ [`/N ]
xU
i := ui ? xbi

if com = G(xS
1, . . . , x

S
M )

for i ∈ [`/N ] for i ∈ [`/N ]
zi := ui ? x

S
i zi := si ? x

U
i

K := H(U,S, xU
1 , ..., x

U
`/N , x

S
1, ..., x

S
`/N , com, pw, z1, ..., z`/N )

com

xU
1 , ..., x

U
`/N

xS
1, ..., x

S
`/N

Figure 27: Com-GA-PAKE`,N with some N | `.

E.2 Variants of Com-GA-PAKE`

In Section 8 we described optimizations that can be used to reduce the number of group
action evaluations in an execution of the protocol. Here, we show that Com-GA-PAKE`
remains secure when one or both optimizations is applied.

Com-GA-PAKE`,N . Let N be some positive integer dividing `. We set

crs := (x0, . . . , x2N−1) ∈ X 2N

and divide the password into `/N blocks of length N
pw = (b1, ..., b`/N ) ∈ {0, ..., 2N − 1}`/N .

The general outline of the protocol does not change. The only difference is that both
the server and the user only generate `/N random group elements (instead of `). Hence
they only need to perform 2 · `/N group action evaluations in total. We write Com-GA-
PAKE`,N for this variant of the protocol. The alterations are summarized in Figure 27.
Theorem 5 (Security of Com-GA-PAKE`,N ). For any adversary A against Com-GA-
PAKE`,N that issues at most qe queries to oracle Execute and qs queries to oracle
SendInit and SendResp, there exist adversary B1 against GA-StCDH, B2 against GA-
GapCDH such that

AdvCom-GA-PAKE`(A) ≤ AdvGA-StCDH
EGAT (B1) + 2qs`

N
·
√

AdvGA-GapCDH
EGAT (B2) + (qs + qe)2

|G|`/N

+ qGqs
|G|`/N

+ 2 · (qG + qs + qe)2

2λ + qs
|PW|

,
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where λ is the output length of G in bits.

The proof of Theorem 5 is very similar to the proof of Theorem 2. Therefore we
do not give a full proof for the security of Com-GA-PAKE`,N , but shortly explain the
difference between the two protocols.

The main difference appears in the analysis of the event badpw. Here, it is not
possible to construct an adversary against ISim-GA-StCDH as was done in the original
proof. Instead, we construct an adversary against 2NISim-GA-StCDH (Definition 16).
This construction is a straightforward adaption of the original construction, therefore
we do not give any details here. But we show that the new assumption can be reduced
to ISim-GA-StCDH (Theorem 6).

Definition 16 (2N-Interactive Simultaneous GA-StCDH (2NISim-GA-StCDH)). On in-
put (x0 = g0 ? x̃, ..., x2N−1 = g2N−1 ? x̃) ∈ X 2N , the adversary first chooses and
commits to some y ∈ X . After receiving the challenge x = g ? x̃ ∈ X , the 2NISim-GA-
StCDH problem requires to compute y0 = gg−1

i ? y and y1 = gg−1
j ? y for one pair

i 6= j ∈ {0, ..., 2N − 1}. For a group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we
define the advantage function of an adversary A as

Adv2NISim-GA-StCDH
XXX (A) := Pr


i 6= j

y0 = GA-CDHxi(x, y)
y1 = GA-CDHxj (x, y)

∣∣∣∣∣∣∣∣∣∣∣∣

(g0, ..., g2N ) $← G2N

(x0, ..., x2N−1) = (g0 ? x̃, ..., g2N−1 ? x̃)
y ← AO1(x0, ..., x2N−1)

g $← G
x = g ? x̃

(y0, y1)← AO1,O2(x)

 ,

where O1 = {GA-DDHxk(x̃, ·, ·)}k, O2 = {GA-DDHxk(x, ·, ·)}k for k ∈ {0, ..., 2N−1}.

Theorem 6 (ISim-GA-StCDH implies 2NISim-GA-StCDH). For any adversary A against
2NISim-GA-StCDH, there exists adversary B against ISim-GA-StCDH such that

Adv2NISim-GA-StCDH
EGAT (A) ≤ 2 · AdvISim-GA-StCDH

EGAT (B) .

Proof. We construct adversary B as follows. On input (x0, x1) = (g0 ? x̃, g1 ? x̃), for
each i ∈ {0, ..., 2N − 1} B chooses a random bit bi $← {0, 1}, a random group element
hi

$← G and computes xi = hi ? xbi . Then it runs A on input (x0, ..., x2N−1). When A
commits on y, B forwards the commitment to receive the challenge x which it gives
to A. Finally, A outputs (i, j) and (y0, y1) such that i 6= j and y0 = GA-CDHxi(x, y),
y1 = GA-CDHxj (x, y). If bi = bj which happens with probability 1/2, then B aborts.
Otherwise, note that xi = (higbi) ? x̃ and thus y0 = (h−1

i g−1
bi
g) ? y, so B can compute

the solution y′0 = hi ? y0 = g−1
bi
g ? y and equivalently y′1 = hj ? y1 = g−1

bj
g ? y. If bj = 0

and bi = 1, the output of B must be swapped.
During the experiment, A also has access to decision oracles GA-DDHxi(x̃, ·, ·)

and GA-DDHxi(x, ·, ·) for i ∈ {0, ..., 2N − 1}. These can be easily simulated using B’s
decision oracles for x0 and x1. On a query GA-DDHxi(x̃, z1, z2), B queries its own
oracle GA-DDHxbi

(x̃, z1, hi ? z2) and fowards the output to A. Analogously, on a query
GA-DDHxi(x, z1, z2), B queries GA-DDHxbi

(x, z1, hi ? z2).
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Twisted version of Com-GA-PAKE`. Here, we analyze the security of Com-GA-
PAKEt

`, the twisted version of Com-GA-PAKE`, as defined in Section 8.2. In contrast
to the situation for X-GA-PAKEt

`, Theorem 2 needs to be changed slightly. Before
presenting the new theorem, we need to introduce the the following assumption.
Definition 17 (Square GA-GapCDH (Sq-GA-GapCDH)). On input g ? x̃ ∈ X , the
Sq-GA-GapCDH problem requires to compute the set element g2 ? x̃. To an effective
group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we associate the advantage function
of an adversary A as

AdvSq-GA-GapCDH
XXX (A) := Pr[AGA-DDH∗(g ? x̃)⇒ g2 ? x̃] ,

where g $← G and A has access to a general decision oracle GA-DDH∗.

Note that in the CSIDH setting, the square group action computational Diffie-
Hellman problem coincides with Problem 3 in [LGd21].
Theorem 7 (Security of Com-GA-PAKEt

`). For any adversary A against Com-GA-
PAKEt

` that issues at most qe execute queries, qs send queries and at most qG and qH
queries to random oracles G and H, there exist an adversary B1 against GA-StCDH and
an adversary B2 against Sq-GA-GapCDH such that

AdvCom-GA-PAKEt
`
(A) ≤ AdvGA-StCDH

EGAT (B1) + qs` ·
√

AdvSq-GA-GapCDH
EGAT (B2) + (qs + qe)2

|G|`

+ qGqs
|G|`

+ 2 · (qG + qs + qe)2

2λ + qs
|PW|

,

where λ is the output length of G in bits.

Again, we do not provide a full proof of the theorem since most parts are completely
analogous to the proof of Theorem 2. For the most part, one can just replace x1 by
xt0 everywhere in the proof. The only significant difference occurs in the analysis of
the event badpw. In particular the restriction x1 = xt0 does not allow to construct an
adversary against ISim-GA-StCDH. Instead, we need to consider the following alteration
of ISim-GA-StCDH for the security analysis.
Definition 18 (Twisted Interactive Simultaneous GA-StCDH (TISim-GA-StCDH)). On
input x0 = g0 ? x̃ ∈ X , the adversary first chooses and commits to some y ∈ X . After
receiving the challenge x = g?x̃ ∈ X , the (TISim-GA-StCDH) problem requires to compute
y0 = gg−1

0 ? y, y1 = gg0 ? y. For a group action XXX ∈ {EGA,REGA,EGAT,REGAT},
we define the advantage function of an adversary A as

AdvTISim-GA-StCDH
XXX (A) := Pr


y0 = GA-CDHx0(x, y)
y1 = GA-CDHxt0(x, y)

∣∣∣∣∣∣∣∣∣∣∣∣

g0
$← G

x0 = g0 ? x̃
y ← AO1(x0)

g $← G
x = g ? x̃

(y0, y1)← AO1,O2(x)

 ,

where O1 = {GA-DDHx0(x̃, ·, ·),GA-DDHxt0
(x̃, ·, ·)} and O2 = {GA-DDHx0(x, ·, ·),

GA-DDHxt0
(x, ·, ·)}.
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Recall that for the proof of Com-GA-PAKE`, we showed that the ISim-GA-StCDH
is implied by GA-GapCDH (Lemma 4). In the same way, one can show that TISim-GA-
StCDH is implied by Sq-GA-GapCDH, more precisely

AdvTISim-GA-StCDH
EGAT (A) ≤

√
AdvSq-GA-GapCDH

EGAT (B) .

This explains the dependence on the new security assumption Sq-GA-GapCDH for this
version of Com-GA-PAKE`.

F PAKE with Perfect Forward Secrecy
When considering perfect forward secrecy, the security experiment is the same as
ExpPAKE described in Section 4. However, we replace the forth freshness condition by
the following:
3.4 No partner exists and Corrupt was not queried prior to acceptance.

As a result, the Corrupt oracle does not need to check anymore whether an instance
that has no partner instance has been tested before or not. If it has tested, it must have
been fresh at that point which is not changed by a corruption query.

Definition 19 (Security of PAKE with Forward Security). We define the security
experiment as ExpPAKE with the additional property in the freshness definition. The
advantage of an adversary A against a password authenticated key exchange protocol
PAKE in Exppfs

PAKE is defined as

Advpfs
PAKE(A) :=

∣∣∣∣Pr[Exppfs
PAKE ⇒ 1]− 1

2

∣∣∣∣ .
F.1 Perfect Forward Secrecy of GA-PAKE`

In order to consider perfect forward secrecy, we need an interactive and password-based
security assumption. This is similar as in the analysis of SPAKE2 [AB19] for example.

Definition 20 (Password-based GA-StCDH (Pw-GA-StCDH)). On input (x0, x1, x
P
1 , ...,

xP
` ) = (g0 ? x̃, g1 ? x̃, p1 ? x̃, ..., p` ? x̃), the Pw-GA-StCDH problem requires the adver-

sary to commit to (yP
1 , ..., y

P
` ) ∈ X ` and then compute zi = GA-CDHxbi (x

P
i , y

P
i ) =

(g−1
bi
· pi) ? yP

i ∀i ∈ [`] after receiving the challenge password pw = (b1, ..., b`) ∈ {0, 1}`.
To an effective group action XXX ∈ {EGA,REGA}, we define the advantage function of
A as

AdvPw-GA-StCDH
XXX (A) := Pr

zi = GA-CDHxbi (x
P
i , y

P
i ) ∀i ∈ [`]

∣∣∣∣∣∣∣∣∣∣∣∣

(g0, g1, p1, ..., p`) $← G`+2

(x0, x1) := (g0 ? x̃, g1 ? x̃)
(xP

1 , ..., x
P
` ) := (p1 ? x̃, ..., p` ? x̃)

(yP
1 , ..., y

P
` )← AO(x0, x1, x

P
1 , ..., x

P
` )

pw := (b1, ..., b`) $← PW
(z1, ..., z`)← AO(pw)

 ,
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BGA-DDHx0 (x,·,·),GA-DDHx1 (x,·,·)(x, x0, x1, pw)
00 (p1, ..., p`) $← G`
01 (xP

1 , ..., x
P
` ) := (p1 ? x, ..., p` ? x)

02 (yP
1 , ..., y

P
` )← AO(x0, x1, x

P
1 , ...x

P
` )

03 (z1, ..., z`)← AO(pw)
04 (b1, ..., b`) := pw
05 if GA-DDHxbi

(x, yP
i , p
−1
i ? zi) = 1 ∀i ∈ [`]

06 return (1, (pw, p1, ..., p`, y
P
1 , ..., y

P
` , z1, ..., z`))

07 return (0, ε)

{GA-DDHxj (xP
i , y
′, z′)}i∈[`],j∈{0,1}

08 return GA-DDHxj (x, y′, p−1
i ? z′)

CGA-DDHx0 (x,·,·),GA-DDHx1 (x,·,·)(x, x0, x1)
09 (b∗, σ, σ′)←RO′

B (x, x0, x1)
10 if b∗ = 0
11 abort and return ⊥
12 (pw, p1, ..., p`, y

P
1 , ..., y

P
` , z1, ..., z`) := σ

13 (pw′, p1, ..., p`, y
P
1 , ..., y

P
` , z
′
1, ..., z

′
`) := σ′

14 (b1, ..., b`) := pw
15 (b′1, ..., b′`) := pw′
16 Find i such that bi 6= b′i
17 return (yP

i , p
−1
i ? zi, p

−1
i ? z′i)

Figure 28: Adversaries B and C against Sim-GA-StCDH for the proof of Lemma 5. A
has access to O = {GA-DDHxj (xP

i , ·, ·)}i∈[`],j∈{0,1}. Reset algorithm RB has access to
O′ = {GA-DDHx0(x, ·, ·),GA-DDHx1(x, ·, ·)}.

where O = {GA-DDHxj (xP
i , ·, ·)}i∈[`],j∈{0,1}.

Lemma 5. The simultaneous GA-StCDH (Sim-GA-StCDH) implies the password-based GA-
StCDH (Pw-GA-StCDH), more precisely

AdvPw-GA-StCDH
EGA (A) ≤

√
AdvSim-GA-StCDH

EGA (B) + 1
|PW|

.

Proof. Intuitively, the term 1/|PW| comes from the fact that the adversary can trivially
solve the problem when guessing the password directly. For the proof we apply the reset
lemma (see Lemma 2), where H = PW.

Let A be an adversary against the Pw-GA-StCDH problem. Now consider adversary
B in Figure 28 that takes as input three set elements (x, x0, x1) and a password pw.
It also has access to decision oracles. First, B chooses (p1, ...p`) $← G` and computes
xP
i = pi ? x for all i ∈ [`]. Then it runs A on input (x0, x1, x

P
1 , ..., x

P
` ) and receives a

commitment (yP
1 , ..., y

P
` ). Now B gives pw to A and A will finally output (z1, ..., z`).

B checks if the solution is correct using the decision oracles and if this is the case, it
outputs I = 1 and σ = (pw, p1, ..., p`, y

P
1 , ..., y

P
` , z1, ..., z`). Otherwise it outputs (0, ε).

If A issues a query to a decision oracle GA-DDHxj (xP
i , y
′, z′) for some i ∈ [`] and

j ∈ {0, 1}, B queries its own decision oracle GA-DDHxj (x, y′, p−1
i ? z′) and forwards

the output to A.
Let IG be the algorithm that chooses g, g0, g1

$← G and outputs (x, x0, x1) =
(g ? x̃, g0 ? x̃, g1 ? x̃). Let acc be defined as in Lemma 2, thus

acc ≥ AdvPw-GA-StCDH
EGA (A) .

Let RB be the reset algorithm associated to B as in Lemma 2 with access to the
same decision oracles as B. Then we construct adversary C against Sim-GA-StCDH as
in Figure 28. C runs the reset algorithm to obtain a bit b∗ as well as the two side
outputs σ, σ′ each consisting of a password, ` group elements pi, ` set elements yP

i

and ` set elements zi. If b∗ = 0, it aborts. If the reset algorithm was successful, note
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that pw 6= pw′, but pi = p′i and yP
i = yP

i
′ for all i ∈ [`] as we run B on the same

random coins. Now C looks for the first index i where the two passwords differ and
outputs the solution (y, y0, y1) = (yP

i , p
−1
i ? zi, p

−1
i ? z′i) which solves Sim-GA-StCDH as

zi = GA-CDHx0(xP
i , y

P
i ) = (g−1

0 · pi) ? xP
i and z′i = GA-CDHx1(xP

i , y
P
i ) = (g−1

1 · pi) ? yP
i .

Applying Lemma 2, we get the bound stated in Lemma 5.

Theorem 8 (Perfect Forward Secrecy of GA-PAKE`). For any adversary A against
GA-PAKE` that issues at most qe execute queries and qs send queries and where H is
modeled as a random oracle, there exist adversary B1 against GA-StCDH and adversaries
B2, B3 against Sim-GA-StCDH such that

Advpfs
GA-PAKE`(A) ≤ AdvGA-StCDH

EGA (B1) + AdvSim-GA-StCDH
EGA (B2) + qs ·

√
AdvSim-GA-StCDH

EGA (B3)

+ 2qs
|PW|

+ (qs + qe)2

|G|`
.

Proof. The proof follows the one of Theorem 3 very closely. However, we have to consider
that an instance is fresh if the password was not corrupted when the instance accepts.
We keep games G0-G6 from Figures 13, 15 and 16 almost as they are, with the following
differences.

In G2, we do not update the freshness variable in the Corrupt oracle in case the
instance was tested (line 88, Figure 13) because this is now a valid query.

Recall that in G5, we raise flag bad whenever there is an inconsistency between the
random oracle list T and the list of keys from send queries Ts. Now we also want keys
to be random even if the password was corrupted afterwards, hence we raise bad in H
in this case as well (line 38, Figure 15), instead of outputting the real session key.

This also translates to G6, where we will then raise flag badpfs at this point (line
38, Figure 16). Thus, we now have

Pr[G5 ⇒ bad] ≤ Pr[G6 ⇒ badpw] + Pr[G6 ⇒ badguess] + Pr[G6 ⇒ badpfs] ,

where badpw and badguess can be bounded as in the proof of Theorem 3.
It remains to bound badpfs. Therefore, we construct an adversary B3 against Pw-GA-

StCDH in Figure 29 and show that

Pr[G6 ⇒ badpfs] ≤ qs · AdvPw-GA-StCDH
EGA (B3) .

We cannot achieve a tight bound for badpfs, as an adversary against Pw-GA-StCDH
must commit to ` set elements before it receives the challenge password. Thus, adversary
B3 first guesses a send query τ∗ which it will use to solve the problem. On a high level,
the simulation of G6 for adversary A works as follows: on the τ∗-th send query, B3 will
output the ` set elements xP

i provided by the assumption and it uses the input to that
send query as the commitment yP

i . Then, if A decides to corrupt the password, it will
receive the challenge password and if it then issues the correct query to H, we can solve
Pw-GA-StCDH, where we use the decision oracle to simulate the other instances.

We will now describe adversary B3 in more detail. B3 inputs set elements (x0, x1) =
(g0 ? x̃, g1 ? x̃) and xP

i = (pi ? x̃) for g0, g1, pi
$← G and i ∈ [`]. It chooses index τ∗

uniformly at random from [qs] and initializes a counter to keep track of the number of

300



Password-Authenticated Key Exchange from Group Actions

B{GA-DDHx0 (xP
i ,·,·),GA-DDHx1 (xP

i ,.·,·)}i∈[`]
3 (x0, x1, x

P
1 , ..., x

P
` )

00 (C, T, Ts) := (∅, ∅, ∅)
01 τ∗ $← [qs]
02 tr∗ := ⊥
03 cnt := 0
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 Stop.

SendInit(U, t, S)
07 cnt := cnt + 1
08 if πtU 6= ⊥ return ⊥
09 (u1, ..., u`) $← G`
10 xU := (xU

1 , ..., x
U
` ) := (u1 ? x

P
1 , ..., u` ? x

P
` )

11 πtU := ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)
12 return (U, xU)

Corrupt(U,S)
13 if (U,S) ∈ C return ⊥
14 C := C ∪ {(U,S)}
15 if tr∗ 6= (U, S, ·, ·)
16 pwUS

$← PW
17 return pwUS

H(U, S, xU, xS, pw, z)
18 if T [U, S, xU, xS, pw, z] = K 6= ⊥
19 return K
20 if (U,S, xU, xS) ∈ Ts
21 (b1, ..., b`) := pw
22 if Ts[U, S, xU, xS] = (U, (u1, ..., u`),K)
23 if GA-DDHxbi

(xP
i , x

S
i , u
−1
i ? zi) = 1 ∀i ∈ [`]

and (U,S) ∈ C and pw := pwUS
24 if tr∗ 6= (U, S, xU, xS) abort
25 Output (u−1

1 ? z1, ..., u
−1
` ? z`)

26 if Ts[U, S, xU, xS] = (S, (s1, ..., s`),K)
27 if GA-DDHxbi

(xP
i , x

U
i , s
−1
i ? zi) = 1 ∀i ∈ [`]

and (U, S) ∈ C and pw := pwUS
28 if tr∗ 6= (U, S, xU, xS) abort
29 Output (s−1

1 ? z1, ..., s
−1
` ? z`)

30 if ∃(u1, ..., u`) s. t. (U, S, xU, xS, pw, (u1, ..., u`)) ∈ T
31 (b1, ..., b`) := pw
32 if GA-DDHxbi

(xP
i , x

S
i , u
−1
i ? zi) = 1 ∀i ∈ [`]

33 return T [U, S, xU, xS, pw, (u1, ..., u`)]
34 else if ∃(s1, ..., s`) s. t. (U, S, xU, xS, pw, (s1, ..., s`)) ∈ T
35 (b1, ..., b`) := pw
36 if GA-DDHxbi

(xP
i , x

U
i , s
−1
i ? zi) = 1 ∀i ∈ [`]

37 return T [U,S, xU, xS, pw, (s1, ..., s`)]
38 T [U, S, xU, xS, pw, z] $← K
39 return T [U,S, xU, xS, pw, z]

SendResp(S, t,U, xU)
40 cnt := cnt + 1
41 if πtS 6= ⊥ return ⊥
42 (s1, ..., s`) $← G`
43 xS := (xS

1, ..., x
S
`) := (s1 ? x

P
1 , ..., s` ? x

P
` )

44 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, xS)
45 return ⊥
46 if (U,S) /∈ C
47 πtS.fr := true
48 if cnt = τ∗

49 tr∗ := (U, S, xU, xS)
50 Output yP := xU to receive pwUS
51 K $← K
52 Ts[U,S, xU, xS] := (S, (s1, ..., s`),K)
53 else
54 πtS.fr := false
55 (b1, ..., b`) := pwUS
56 if ∃z s. t. (U, S, xU, xS, pwUS, z) ∈ T

and ∀i ∈ [`] : GA-DDHxbi
(xP
i , x

U
i , s
−1
i ? zi) = 1

57 K := T [U,S, xU, xS, pwUS, z]
58 else
59 K $← K
60 T [U,S, xU, xS, pwUS, (s1, ..., s`)] := K
61 πtS := ((s1, ..., s`), (U, S, xU, xS),K, true)
62 return (S, xS)

SendTermInit(U, t, S, xS)
63 cnt := cnt + 1
64 if πtU 6= ((u1, ..., u`), (U, S, xU,⊥),⊥,⊥)
65 return ⊥
66 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U,S, xU, xS)

67 return ⊥
68 if ∃t′ s. t. πt

′
S .tr = (U,S, xU, xS)

and πt
′

S .fr = true
69 πtU.fr := true
70 (S, (s1, ..., s`),K) := Ts[U, S, xU, B]
71 else if (U, S) /∈ C
72 πtU.fr := true
73 if cnt = τ∗

74 tr∗ := (U, S, xU, xS)
75 Output yP := xS to receive pwUS
76 K $← K
77 Ts[U,S, xU, xS] := (U, (u1, ..., u`),K)
78 else
79 πtU.fr := false
80 (b1, ..., b`) := pwUS
81 if ∃z s. t. (U, S, xU, xS, pwUS, z) ∈ T

and ∀i ∈ [`] : GA-DDHxbi
(xP
i , x

S
i , u
−1
i ? zi) = 1

82 K := T [U,S, xU, xS, pwUS, z]
83 else
84 K $← K
85 T [U, S, xU, xS, pwUS, (u1, ..., u`)] := K
86 πtU := ((u1, ..., u`), (U,S, xU, xS),K, true)
87 return true

Figure 29: Adversary B3 against Pw-GA-StCDH for the proof of Theorem 8. A has
access to oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,
Corrupt,Test,H}. Oracles Execute, Reveal and Test are defined as in Figure 16.
Lines written in blue show how B3 simulates the game.
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send queries issued so far (lines 01, 03). The counter is incremented whenever a send
query is made (lines 07, 40, 63). As we do not know whether the τ∗-th send query will
be issued for a user or a server instance, B3 will embed the elements xP

i for all instances,
similarly to adversary B2 in Figure 17. In particular,

xU
i = ui ? x

P
i = (ui · pi · g−1

0 ) ? x0 = (ui · pi · g−1
1 ) ? x1

xS
i = si ? x

P
i = (si · pi · g−1

0 ) ? x0 = (si · pi · g−1
1 ) ? x1

If the password of an instance is not corrupted when the send query is issued, B3 checks
whether this is the τ∗-th query. If this is the case, it marks the trace of this instance as
tr∗ and outputs xU in SendResp or xS in SendTermInit as the commitment yP (lines
48-50, 73-75) to receive the challenge password pwUS. This is the password which B3
will output when the adversary corrupts this pair (U, S). For all other corrupt queries,
it samples a password uniformly at random (line 16). Instances that are not fresh will
be simulated with the decision oracles as in the simulation of adversary B2. For server
instances (lines 56-57), this means that we check if there already exists an entry in T
such that

zi = GA-CDHxbi (x
U
i , x

S
i ) = GA-CDHxbi (x

U
i , si ? x

P
i ) ⇔ GA-CDHxbi (x

P
i , x

U
i ) = s−1

i ? zi .

Equivalently, we check if GA-CDHxbi (x
P
i , x

S
i ) = u−1

i ? zi for user instances (lines 81-82).
If there does not exist an entry yet, B3 adds a special entry to T (lines 60, 85), which
contains the secret group elements si or ui so that we can patch the random oracle
later (lines 30-37).

Finally, we look at random oracle queries for all fresh instances contained in Ts (lines
20-29). B3 checks if the provided z is valid using the decision oracles as explained above.
Then it checks for event badpfs, i.e., if the password was corrupted and it matches the
one in the query. If the query now additionally contains the target trace tr∗, we can
solve the Pw-GA-StCDH problem by outputting u−1

i ? zi in case of a user instance or
s−1
i ? zi in case of a server instance. If the trace is not the target trace, B3 aborts.

This concludes the analysis of badpfs. Collecting the bounds and applying Lemma 5
yields the bound in Theorem 8.

F.2 Perfect Forward Secrecy for X-GA-PAKE`

In order to prove forward secrecy of X-GA-PAKE`, we need the following interactive
problem which is non-tightly implied by the SqInv-GA-StCDH problem.

Definition 21 (Double Password-based GA-StCDH (DPw-GA-StCDH)). On input
(x0, x1, x

P
1 , ..., x

P
` , x̂

P
1 , ..., x̂

P
` ) = (g0 ? x̃, g1 ? x̃, p1 ? x̃, ..., p` ? x̃, p̂1 ? x̃, ..., p̂` ? x̃), the

DPw-GA-StCDH problem requires the adversary to commit to (yP
1 , ..., y

P
` ) ∈ X ` and

then compute zi = (g−1
bi
· pi) ? yP

i ∀i ∈ [`], as well as ẑi = (g−1
bi
· p̂i) ? yP

i ∀i ∈ [`] after
receiving the challenge password pw = (b1, ..., b`) ∈ {0, 1}`. To an effective group action
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B{GA-DDHxj (wi,·,·)}i,j∈{0,1}(x0, x1, w0, w1, pw)
00 (p1, ..., p`, p̂1, ..., p̂`) $← G2`

01 (xP
1 , ..., x

P
` ) := (p1 ? x, ..., p` ? w0)

02 (x̂P
1 , ..., x̂

P
` ) := (p̂1 ? x, ..., p̂` ? w1)

03 (yP
1 , ..., y

P
` )← AO(x0, x1, x

P
1 , ...x

P
` , x̂

P
1 , ..., x̂

P
` )

04 (z1, ..., z`, ẑ1, ..., ẑ`)← AO(pw)
05 (b1, ..., b`) := pw
06 if GA-DDHxbi

(w0, y
P
i , p
−1
i ? zi) = 1 ∀i ∈ [`]

and GA-DDHxbi
(w1, y

P
i , p̂
−1
i ? ẑi) = 1 ∀i ∈ [`]

07 return (1, (pw, p1, ..., p`, p̂1, ..., p̂`, y
P
1 , ..., y

P
` , z1, ..., z`, ẑ1, ..., ẑ`))

08 return (0, ε)

{GA-DDHxj (xP
i , y
′, z′)}i∈[`],j∈{0,1}

09 return GA-DDHxj (w0, y
′, p−1

i ? z′)

{GA-DDHxj (x̂P
i , y
′, z′)}i∈[`],j∈{0,1}

10 return GA-DDHxj (w1, y
′, p̂−1

i ? z′)

Figure 30: Adversary B for the proof of Lemma 6. Adversary A has access to oracles
O = {GA-DDHxj (xP

i , ·, ·),GA-DDHxj (x̂P
i , ·, ·)}i∈[`],j∈{0,1}.

XXX ∈ {EGA,REGA,EGAT,REGAT}, we define the advantage function of A as

AdvDPw-GA-StCDH
XXX (A) := Pr


zi = GA-CDHxbi (x

P
i , y

P
i ) ∀i ∈ [`]

ẑi = GA-CDHxbi (x̂
P
i , y

P
i ) ∀i ∈ [`]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(g0, g1, p1, ..., p`, p̂1, ..., p̂`) $← G2`+2

(x0, x1) := (g0 ? x̃, g1 ? x̃)
(xP

1 , ..., x
P
` ) := (p1 ? x̃, ..., p` ? x̃)

(x̂P
1 , ..., x̂

P
` ) := (p̂1 ? x̃, ..., p̂` ? x̃)

(yP
1 , ..., y

P
` )← AO(x0, x1, x

P
1 , ..., x

P
` , x̂

P
1 , ..., x̂

P
` )

pw := (b1, ..., b`) $← PW
(z1, ..., z`, ẑ1, ..., ẑ`)← AO(pw)


,

where O = {GA-DDHxj (xP
i , ·, ·),GA-DDHxj (x̂P

i , ·, ·)}i∈[`],j∈{0,1}.

Lemma 6. The square-inverse GA-StCDH (SqInv-GA-StCDH) implies the double password-
based GA-StCDH (DPw-GA-StCDH), more precisely

AdvDPw-GA-StCDH
EGAT (A) ≤

√
AdvSqInv-GA-StCDH

EGAT (B) + 1
|PW|

.

Proof. Instead of considering the SqInv-GA-StCDH problem, we will show that the DSim-
GA-StCDH problem implies the DPw-GA-StCDH problem and then appy Lemma 1. The
proof is similar to the one of Lemma 5. We apply the reset lemma (Lemma 2), where
H = PW.

Let A be an adversary against the DPw-GA-StCDH problem. Consider adversary
B in Figure 30 that takes as input four set elements (x0, x1, w0, w1) and a password
pw. It also has access to decision oracles GA-DDHxj (wi, ·, ·) with i, j ∈ {0, 1}. First, B
generates (p1, ...p`, p̂1, ..., p̂`) $← G2` and computes xP

i = pi ? w0 and x̂P
i = p̂i ? w1 for all

i ∈ [`]. Then it runs A on input (x0, x1, x
P
1 , ..., x

P
` , x̂

P
1 , ..., x̂

P
` ) and receives a commitment

(yP
1 , ..., y

P
` ). Now B sends pw to A and A will finally output (z1, ..., z`, ẑ1, ..., ẑ`). B

checks if the solution is correct using the decision oracles and if this is the case, it
outputs b = 1 and σ = (pw, p1, ..., p`, p̂1, ..., p̂`, y

P
1 , ..., y

P
` , z1, ..., z`, ẑ1, ..., ẑ`). Otherwise

it outputs (0, ε).
If A issues a query to a decision oracle GA-DDHxj (xP

i , y
′, z′) for some i ∈ [`] and

j ∈ {0, 1}, B queries its own decision oracleGA-DDHxj (w0, y
′, p−1

i ?z′) and forwards the
output to A. Analogously, if A issues a query to a decision oracle GA-DDHxj (x̂P

i , y
′, z′),

B queries GA-DDHxj (w1, y
′, p̂−1

i ? z′).
Let IG be the algorithm that chooses g0, g1, h0, h1

$← G and outputs

(x0, x1, w0, w1) = (g0 ? x̃, g1 ? x̃, h0 ? x̃, h1 ? x̃).
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C{GA-DDHxj (wi,·,·)}i,j∈{0,1}(x0, x1, w0, w1)
00 (b, σ, σ′)←RO

B(x0, x1, w0, w1)
01 if b = 0
02 abort and return ⊥
03 (pw, p1, ..., p`, p̂1, ..., p̂`, y

P
1 , ..., y

P
` , z1, ..., z`, ẑ1, ..., ẑ`) := σ

04 (pw′, p1, ..., p`, p̂1, ..., p̂`, y
P
1 , ..., y

P
` , z
′
1, ..., z

′
`, ẑ
′
1, ..., ẑ

′
`) := σ′

05 (b1, ..., b`) := pw
06 (b′1, ..., b′`) := pw′
07 Find i such that bi 6= b′i
08 return (yP

i , p
−1
i ? zi, p̂

−1
i ? ẑi, p

−1
i ? z′i, p̂

−1
i ? ẑ′i)

Figure 31: Adversary C against DSim-GA-StCDH for the proof of Lemma 6. RB has
access to oracles O = {GA-DDHxj (wi, ·, ·)}i,j∈{0,1}.

Let acc be defined as in Lemma 2, thus

acc ≥ AdvDPw-GA-StCDH
EGAT (A) .

Let RB be the forking algorithm associated to B as in Lemma 2 with access to the
same decision oracles as B. Then we construct adversary C against DSim-GA-StCDH
as in Figure 31. C runs the reset algorithm to obtain a bit b∗ as well as the two side
outputs σ, σ′. C looks for the first index i where pw and pw′ differ and outputs the
solution (y, y0, y1, y2, y3) = (yP

i , p
−1
i ? zi, p̂

−1
i ? ẑi, p

−1
i ? z′i, p̂

−1
i ? ẑ′i).

To see that the latter solves the DSim-GA-StCDH problem, note that p−1
i ? xP

i = w0.
This implies,

GA-CDHxbi (w0, y
P
i ) = p−1

i ? GA-CDHxbi (x
P
i , y

P
i ) = p−1

i ? zi.

And similarly GA-CDHxbi (w1, y
P
i ) = p̂−1

i ? ẑi.
Applying Lemmata 2 and 1, we get the bound stated in Lemma 6.

Theorem 9 (Perfect Forward Secrecy of X-GA-PAKE`). For any adversary A against
X-GA-PAKE` that issues at most qe execute queries and qs send queries and where
H is modeled as a random oracle, there exist adversary B1 against GA-StCDH, and
adversaries B2, B3 against SqInv-GA-StCDH such that

Advpfs
X-GA-PAKE`(A) ≤ AdvGA-StCDH

EGAT (B1) + AdvSqInv-GA-StCDH
EGAT (B2)

+ qs ·
√

AdvSqInv-GA-StCDH
EGAT (B3) + 2qs

|PW|
+ (qs + qe)2

|G|2`
.

Proof. The proof follows the one of Theorem 1 very closely and we make the same
adaptions as for the proof of Theorem 8. In particular, we also keep games G0-G6 from
Figures 5, 8 and 9 with the same changes as described in the proof of Theorem 8, until
we get

Pr[G5 ⇒ bad] ≤ Pr[G6 ⇒ badpw] + Pr[G6 ⇒ badguess] + Pr[G6 ⇒ badpfs] ,

where it remains to bound badpfs. For this purpose, we construct an adversary B3
against DPw-GA-StCDH in Figure 32 and show that

Pr[G6 ⇒ badpfs] ≤ qs · AdvDPw-GA-StCDH
EGAT (B3) .
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B
{GA-DDHxb (y,·,·)}

b∈{0,1},y∈{xP
i
,x̂P
i
},i∈[`]

3 (x0, x1, x
P
1 , ..., x

P
` , x̂

P
1 , ..., x̂

P
` )

00 (C, T, Ts) := (∅, ∅, ∅)
01 τ∗ $← [qs]
02 tr∗ := ⊥
03 cnt := 0
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 Stop.

SendInit(U, t, S)
07 cnt := cnt + 1
08 if πtU 6= ⊥ return ⊥
09 u := (u1, ..., u`) $← G`
10 û := (û1, ..., û`) $← G`
11 xU := (xU

1 , ..., x
U
` ) := (u1 ? x

P
1 , ..., u` ? x

P
` )

12 x̂U := (x̂U
1 , ..., x̂

U
` ) := (û1 ? x̂

P
1 , ..., û` ? x̂

P
` )

13 πtU := ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
14 return (U, xU, x̂U)

Corrupt(U, S)
15 if (U, S) ∈ C return ⊥
16 C := C ∪ {(U, S)}
17 if tr∗ 6= (U, S, ·, ·)
18 pwUS

$← PW
19 return pwUS

H(U, S, xU, x̂U, xS, x̂S, pw, z)
20 if T [U,S, xU, x̂U, xS, x̂S, pw, z] = K 6= ⊥
21 return K
22 if (U, S, xU, x̂U, xS, x̂S) ∈ Ts
23 (b1, ..., b`) := pw
24 if Ts[U, S, xU, x̂U, xS, x̂S] = (U, (u, û),K)
25 if GA-DDHxbi

(xP
i , x

S
i , u
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(x̂P
i , x

S
i , û
−1
i ? zi,2) = 1 ∀i ∈ [`]

and (U, S) ∈ C and pw := pwUS
26 if tr∗ 6= (U, S, xU, x̂U, xS, x̂S) abort
27 Output (u−1

1 ?z1,1, ..., u
−1
` ?z`,1, û

−1
1 ?z1,2, ..., û

−1
` ?z`,2)

28 if Ts[U, S, xU, x̂U, xS, x̂S] = (S, (s, ŝ),K)
29 if GA-DDHxbi

(xP
i , x

U
i , s
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(x̂P
i , x

U
i , ŝ
−1
i ? zi,3) = 1 ∀i ∈ [`]

and (U, S) ∈ C and pw := pwUS
30 if tr∗ 6= (U, S, xU, x̂U, xS, x̂S) abort
31 Output (s−1

1 ? z1,1, ..., s
−1
` ? z`,1, ŝ

−1
1 ? z1,3, ..., ŝ

−1
` ? z`,3)

32 if ∃(u, û) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (u, û)) ∈ T
33 (b1, ..., b`) := pw
34 if GA-DDHxbi

(xP
i , x

S
i , u
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(x̂P
i , x

S
i , û
−1
i ? zi,2) = 1 ∀i ∈ [`]

35 return T [U, S, xU, x̂U, xS, x̂S, pw, (u, û)]
36 else if ∃(s, ŝ) s. t. (U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ)) ∈ T
37 (b1, ..., b`) := pw
38 if GA-DDHxbi

(xP
i , x

U
i , s
−1
i ? zi,1) = 1 ∀i ∈ [`]

and GA-DDHxbi
(x̂P
i , x

U
i , ŝ
−1
i ? zi,3) = 1 ∀i ∈ [`]

39 return T [U, S, xU, x̂U, xS, x̂S, pw, (s, ŝ)]
40 T [U, S, xU, x̂U, xS, x̂S, pw, z] $← K
41 return T [U,S, xU, x̂U, xS, x̂S, pw, z]

SendResp(S, t,U, xU, x̂U)
42 cnt := cnt + 1
43 if πtS 6= ⊥ return ⊥
44 s := (s1, ..., s`) $← G`
45 ŝ := (ŝ1, ..., ŝ`) $← G`
46 xS := (xS

1, ..., x
S
`) := (s1 ? x

P
1 , ..., s` ? x

P
` )

47 x̂S := (x̂S
1, ..., x̂

S
`) := (ŝ1 ? x̂

P
1 , ..., ŝ` ? x̂

P
` )

48 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, x̂U, xS, x̂S)
49 return ⊥
50 if (U, S) /∈ C
51 πtS.fr := true
52 if cnt = τ∗

53 tr∗ := (U,S, xU, x̂U, xS, x̂S)
54 Output yP := xU to receive pwUS
55 K $← K
56 Ts[U, S, xU, x̂U, xS, x̂S] := (S, (s, ŝ),K)
57 else
58 πtS.fr := false
59 (b1, ..., b`) := pwUS
60 if ∃z s. t. (U, S, xU, xS, pwUS, z) ∈ T

and ∀i ∈ [`] : GA-DDHxbi
(xP
i , x

U
i , s
−1
i ? zi,1) = 1

and ∀i ∈ [`] : GA-DDHxbi
(x̂P
i , x

U
i , ŝ
−1
i ? zi,3) = 1

61 K := T [U, S, xU, x̂U, xS, x̂S, pwUS, z]
62 else
63 K $← K
64 T [U,S, xU, x̂U, xS, x̂S, pwUS, (s, ŝ)] := K
65 πtS := ((s, ŝ), (U, S, xU, x̂U, xS, x̂S),K, true)
66 return (S, xS, x̂S)

SendTermInit(U, t, S, xS, x̂S)
67 cnt := cnt + 1
68 if πtU 6= ((u, û), (U, S, xU, x̂U,⊥,⊥),⊥,⊥)
69 return ⊥
70 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U, S, xU, x̂U, xS, x̂S)

71 return ⊥
72 if ∃t′ s. t. πt

′
S .tr = (U, S, xU, x̂U, xS, x̂S)

and πt
′

S .fr = true
73 πtU.fr := true
74 (S, (s, ŝ),K) := Ts[U, S, xU, x̂U, xS, x̂S]
75 else if (U,S) /∈ C
76 πtU.fr := true
77 if cnt = τ∗

78 tr∗ := (U,S, xU, x̂U, xS, x̂S)
79 Output yP := xS to receive pwUS
80 K $← K
81 Ts[U, S, xU, x̂U, xS, x̂S] := (U, (u, û),K)
82 else
83 πtU.fr := false
84 (b1, ..., b`) := pwUS
85 if ∃z s. t. (U, S, xU, x̂U, xS, x̂S, pwUS, z) ∈ T

and ∀i ∈ [`] : GA-DDHxbi
(xP
i , x

S
i , u
−1
i ? zi,1) = 1

and ∀i ∈ [`] : GA-DDHxbi
(x̂P
i , x

S
i , û
−1
i ? zi,2) = 1

86 K := T [U, S, xU, x̂U, xS, x̂S, pwUS, z]
87 else
88 K $← K
89 T [U,S, xU, x̂U, xS, x̂S, pwUS, (u, û)] := K
90 πtU := ((u, û), (U, S, xU, x̂U, xS, x̂S),K, true)
91 return true

Figure 32: Adversary B3 against DPw-GA-StCDH for the proof of Theorem 9. A has
access to oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,
Corrupt,Test,H}. Oracles Execute, Reveal and Test are defined as in Figure 9.
Lines written in blue show how B3 simulates the game.
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As in the proof of Theorem 8, we cannot achieve a tight bound for badpfs. The adversary
against DPw-GA-StCDH must commit to ` set elements before it receives the challenge
password. Thus, we apply the same guessing and simulation strategy. Due to the
similarities to Theorem 8, we will only briefly describe B3.

It inputs set elements (x0, x1) = (g0 ? x̃, g1 ? x̃) and xP
i = (pi ? x̃), x̂P

i = (p̂i ? x̃) for
g0, g1, pi, p̂i

$← G and i ∈ [`]. It embeds the elements xP
i , x̂P

i in all instances queried to
SendInit and SendResp.

If the password of an instance is not corrupted when one of oracles SendResp or
SendTermInit is queried, B3 checks whether this is the τ∗-th query and in this case
outputs xU in SendResp or xS in SendTermInit as the commitment yP to receive
the challenge password pwUS. This is the password B3 will output when the adversary
corrupts this pair of user and server. Instances that are not fresh will be simulated with
the decision oracles.

Finally, we look at random oracle queries for all fresh instances contained in Ts. B3
checks if the provided z is valid using the decision oracles. Then it checks for event
badpfs, i.e., if the password was corrupted and matches the one in the query. If the
query now additionally contains the target trace, we can solve the DPw-GA-StCDH
problem. If the trace is not the target trace, B3 aborts. This concludes the analysis of
badpfs. Collecting the bounds and applying Lemma 6 yields the bound in Theorem 9.

F.3 Perfect Forward Secrecy of Com-GA-PAKE`

In order to prove forward secrecy of Com-GA-PAKE`, we need the following interactive
problem which is non-tightly implied by the GA-GapCDH problem.

Definition 22 (Interactive Password-based GA-StCDH (IPw-GA-StCDH)). On input
(x0, x1) = (g0 ? x̃, g1 ? x̃), the IPw-GA-StCDH problem requires the adversary to commit
to (yP

1 , ..., y
P
` ) ∈ X `. Then it receives (xP

1 , ..., x
P
` ) = (p1 ? x̃, ..., p` ? x̃) and the challenge

password pw = (b1, ..., b`) ∈ {0, 1}` and must compute zi = (g−1
bi
· pi) ? yP

i ∀i ∈ [`]. To an
effective group action XXX ∈ {EGA,REGA,EGAT,REGAT}, we associate the advantage
function of A as

AdvIPw-GA-StCDH
XXX (A) := Pr

zi = GA-CDHxbi (x
P
i , y

P
i ) ∀i ∈ [`]

∣∣∣∣∣∣∣∣∣∣∣∣

(g0, g1, p1, ..., p`) $← G`+2

(x0, x1) := (g0 ? x̃, g1 ? x̃)
(yP

1 , ..., y
P
` )← AO1(x0, x1)

(xP
1 , ..., x

P
` ) := (p1 ? x̃, ..., p` ? x̃)

pw := (b1, ..., b`) $← PW
(z1, ..., z`)← AO1,O2(xP

1 , ..., x
P
` , pw)

 ,

where O1 = {GA-DDHxj (x̃, ·, ·)}j∈{0,1} and O2 = {GA-DDHxj (xP
i , ·, ·)}i∈[`],j∈{0,1}.

Lemma 7. The group action gap computational Diffie-Hellman problem (GA-GapCDH)
implies the interactive password-based GA-StCDH (IPw-GA-StCDH), more precisely

AdvIPw-GA-StCDH
EGAT (A) ≤

√
AdvGA-GapCDH

EGAT (B) + 1
|PW|

.
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BGA-DDH∗(x0, x1, (xP
1 , ..., x

P
` , pw))

00 (yP
1 , ..., y

P
` )← AO1 (x0, x1)

01 (z1, ..., z`)← AO1,O2 (xP
1 , ..., x

P
` , pw)

02 (b1, ..., b`) := pw
03 if GA-DDHxbi

(xP
i , y

P
i , zi) = 1 ∀i ∈ [`]

04 return (1, (yP
1 , ...y

P
` , z1, ..., z`))

05 return (0, ε)

CGA-DDH∗(x0, x1)
06 Pick random coins ρ for B
07 (p1, ..., p`) $← G`
08 xP := (xP

1 , ..., x
P
` ) := (p1 ? x̃, ..., p` ? x̃)

09 pw := (b1, ..., b`) $← PW
10 (b, σ)← BGA-DDH∗(x0, x

t
1, (xP, pw); ρ)

11 if b = 0 return ⊥
12 (yP

1 , ..., y
P
` , z1, ..., z`) := σ

13 (α1, ..., α`) $← G`

14 xP′ := (xP
1
′
, ..., xP

`
′) := (α1 ? z

t
1, ..., α` ? z

t
`)

15 pw′ := (b′1, ..., b′`) $← PW
16 (b′, σ′)← BGA-DDH∗(x0, x

t
1, (xP′, pw′); ρ)

17 if b = 0 return ⊥
18 (yP

1 , ..., y
P
` , z
′
1, ..., z

′
`) := σ′

19 Find i such that bi 6= b′i
20 if bi = 0 and b′i = 1
21 return α−1

i · pi ? z
′
i

22 else
23 return (α−1

i · pi ? z
′
i)t

Figure 33: Adversaries B and C against GA-GapCDH for the proof of Lemma 7.
Adversary A has access to decision oracles O1 = {GA-DDHxj (x̃, ·, ·)}j∈{0,1} and O2 =
{GA-DDHxj (xP

i , ·, ·)}i∈[`],j∈{0,1}, which B simulates using the gap oracle GA-DDH∗.

Instead of proving that the ISim-GA-StCDH problem implies the password-based
version IPw-GA-StCDH, we directly use the GA-GapCDH problem to achieve a better
bound. The proof uses techniques that are also used in the proof of Lemma 4.

Proof. We use the reset lemma (see Lemma 2) with H = X ` × PW. Let A be an
adversary against IPw-GA-StCDH. Consider adversary B against GA-GapCDH in Fig-
ure 33 that takes input (x0, x1) as well as (xP

1 , ..., x
P
` , pw). It also has access to a gap

oracle GA-DDH∗. First, B runs A on (x0, x1) to receive a commitment (yP
1 , ..., y

P
` ).

Now B sends (xP
1 , ..., x

P
` , pw) to A and A will finally output (z1, ..., z`). B checks if the

solution is correct using the decision oracle and if this is the case, it outputs b = 1 and
σ = (yP

1 , ..., y
P
` , z1, ..., z`) as side output. Otherwise it outputs (0, ε). As B has access to

a full gap oracle, it can forward all queries of A.
Let IG be the algorithm that chooses g0, g1

$← G and outputs (x0, x1) = (g0?x̃, g1?x̃).
Let acc be defined as in Lemma 2, thus

acc ≥ AdvIPw-GA-StCDH
EGAT (A) .

Let RB be the reset algorithm associated to B as in Lemma 2 with access to the same
decision oracles as B.

We construct an adversary C against GA-GapCDH (Figure 33), but instead of running
the reset algorithm, C will simulate RB running B directly.
C inputs (x0, x1) and has access to a gap oracle. First, it chooses random coins ρ for

B. It also samples a random element from H by first picking pi $← G for i ∈ [`] and a
password pw and then computing xP

i = pi ? x̃. Then it runs B on (x0, x
t
1, (xP

1 , ..., x
P
` , pw)

using random coins ρ. Note that we use the twist of x1. B outputs a bit b and side output
σ. If B was successful, i.e., b = 1, then C parses σ as (yP

1 , ..., y
P
` , z1, ..., z`). Otherwise it

aborts. Now it runs B a second time, this time on input (x0, x
t
1, (xP

1
′
, ..., xP

`

′
, pw′), where
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xP
i
′ = αi ? z

t
i for αi $← G and i ∈ [`] and pw′ is a fresh random password, using the

same random coins ρ. Note that all xP
i are also uniformly distributed over X . If B is

successful again, it outputs (1, (yP
1 , ..., y

P
` , z
′
1, ..., z

′
`)), where the first ` set elements are

the same as in the first run of B since we run B on the same random coins. Now C can
solve GA-GapCDH as follows: Let yP

i = hi ? x̃ for some hi ∈ G. Then we have

αi ? z
t
i =

{
αi · g0 · p−1

i · h
−1
i ? x̃ if bi = 0

αi · g−1
1 · p−1

i · h
−1
i ? x̃ if bi = 1

and for z′i it holds that

z′i =


g−1

0 · αi · g0 · p−1
i ? x̃ if bi = 0, b′i = 0

g1 · αi · g0 · p−1
i ? x̃ if bi = 0, b′i = 1

g−1
0 · αi · g−1

1 · p−1
i ? x̃ if bi = 1, b′i = 0

g1 · αi · g−1
1 · p−1

i ? x̃ if bi = 1, b′i = 1

where hi cancels out in all cases. If pw 6= pw′, then they must differ in at least one bit.
Let i be the first index such that bi 6= b′i. Using the knowledge of pi and αi, C outputs
α−1 · pi ? z′i = GA-CDH(x0, x1) in case bi = 0 and b′i = 1. Otherwise if bi = 1 and b′i = 0,
it outputs (α−1

i pi ? z
′
i)t = GA-CDH(x0, x1).

Theorem 10 (Perfect Forward Secrecy of Com-GA-PAKE`). For any adversary A
against Com-GA-PAKE` that issues at most qe execute queries, qs send queries and at
most qG and qH queries to random oracles G and H, there exist adversary B1 against
GA-StCDH and adversaries B2, B3 against GA-GapCDH such that

Advpfs
Com-GA-PAKE`(A) ≤ AdvGA-StCDH

EGAT (B1) + qs` ·
√

AdvGA-GapCDH
EGAT (B2) + qs ·

√
AdvGA-GapCDH

EGAT (B3)

+ (qs + qe)2

|G|`
+ qGqs
|G|`

+ 2 · (qG + qs + qe)2

2λ + qs
|PW|

,

where λ is the output length of G in bits.

Proof. The proof follows the one of Theorem 2 very closely and we make the same
adaptions as for the proof of Theorem 8. In particular, we also keep games G0-G9 from
Figures 19, 22 and 24 with the same changes as described in the proof of Theorem 8,
until we get

Pr[G8 ⇒ bad] ≤ Pr[G9 ⇒ badpw] + Pr[G9 ⇒ badguess] + Pr[G9 ⇒ badpfs] ,

where it remains to bound badpfs. For this purpose, we construct an adversary B3
against IPw-GA-StCDH in Figures 34 and 35 and show that

Pr[G9 ⇒ badpfs] ≤ qs · AdvIPw-GA-StCDH
EGAT (B3) .

We apply the same guessing and simulation strategy. Due to the similarities to
Theorem 8 and adversary B2 in Theorem 2, we will only briefly describe B3. It inputs
set elements (x0, x1) = (g0 ? x̃, g1 ? x̃).
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BGA-DDHx0 (x̃,·,·),GA-DDHx1 (x̃,.·,·)
3 (x0, x1)

00 (C, TG, TH, Ts) := (∅, ∅, ∅, ∅)
01 τ∗ $← [qs]
02 tr∗ := ⊥
03 cnt := 0
04 β $← {0, 1}
05 β′ ← AO(x0, x1)
06 Stop.

SendInit(S, t,U)
07 cnt := cnt + 1
08 if πtS 6= ⊥ return ⊥
09 com $← {0, 1}λ
10 if ∃xS s. t. TG[xS] = com
11 return ⊥
12 TG[�] := com
13 πtS := (⊥, (U, S,⊥,⊥, com),⊥,⊥)
14 πtS.fr := false
15 return (S, com)

SendResp(U, t, S, com)
16 cnt := cnt + 1
17 if πtU 6= ⊥ return ⊥
18 if @xS s. t. TG[xS] = com
19 πtU.acc := false
20 (u1, ..., u`) $← G`
21 xU := (xU

1 , ..., x
U
` ) := (u1 ? x̃, ..., u` ? x̃)

22 if cnt = τ∗ and πtU.acc 6= false
23 find (xS) s. t. TG[xS] = com
24 Output yP := xS to receive xP, pwUS
25 � From now on B3 also has access to

GA-DDHx0 (xP
i , ·, ·),GA-DDHx1 (xP

i , ·, ·)
26 xU := xP

27 (u1, ..., u`) := ⊥
28 tr∗ = (U, S, xU,⊥, com)
29 πtU := ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)
30 πtU.fr := false
31 return (U, xU)

Corrupt(U, S)
32 if (U, S) ∈ C return ⊥
33 C := C ∪ {(U, S)}
34 if tr∗ 6= (U, S, ·, ·)
35 pwUS

$← PW
36 return pwUS

H(U, S, xU, xS, com, pw, z)
37 if TH[U, S, xU, xS, com, pw, z] = K 6= ⊥
38 return K
39 (b1, ..., b`) := pw
40 if (U, S, xU, xS, com) ∈ Ts
41 if Ts[U, S, xU, xS, com] = (U, (u1, ..., u`),K)
42 if tr∗ = (U,S, xU, xS, com)

and GA-DDHxbi
(xP
i , x

S
i , zi) = 1 ∀i ∈ [`]

and (U, S) ∈ C and pw := pwUS
43 Output (z1, ..., z`)
44 if tr∗ = (U,S, xU, xS, com)

and GA-DDHxbi
(x̃, xS

i , u
−1
i ? zi) = 1 ∀i ∈ [`]

and (U, S) ∈ C and pw := pwUS
45 abort
46 if Ts[U, S, xU, xS, com] = (S, (s1, ..., s`),K)
47 if tr∗ = (U,S, xU, xS, com)

and GA-DDHxbi
(xP
i , x

U
i , zi) = 1 ∀i ∈ [`]

and (U, S) ∈ C and pw := pwUS
48 Output (z1, ..., z`)
49 if GA-DDHxbi

(x̃, xU
i , s
−1
i ? zi) = 1 ∀i ∈ [`]

and (U, S) ∈ C and pw := pwUS
50 abort
51 if ∃(u1, ..., u`) s. t. (U,S, xU, xS, com, pw, (u1, ..., u`)) ∈ TH
52 if tr∗ = (U, S, xU, xS, com)

and GA-DDHxbi
(xP
i , x

S
i , zi) = 1 ∀i ∈ [`]

53 return TH[U, S, xU, xS, com, pw, (u1, ..., u`)]
54 if GA-DDHxbi

(x̃, xS
i , u
−1
i ? zi) = 1 ∀i ∈ [`]

55 return TH[U, S, xU, xS, com, pw, (u1, ..., u`)]
56 else if ∃(s1, ..., s`) s. t. (U,S, xU, xS, com, pw, (s1, ..., s`)) ∈ TH
57 if tr∗ = (U, S, xU, xS, com)

and GA-DDHxbi
(xP
i , x

U
i , zi) = 1 ∀i ∈ [`]

58 return TH[U, S, xU, xS, com, pw, (s1, ..., s`)]
59 if GA-DDHxbi

(x̃, xU
i , s
−1
i ? zi) = 1 ∀i ∈ [`]

60 return TH[U, S, xU, xS, com, pw, (s1, ..., s`)]
61 TH[U, S, xU, xS, com, pw, z] $← K
62 return TH[U, S, xU, xS, com, pw, z]

Figure 34: Adversary B3 against IPw-GA-StCDH for the proof of Theorem 10. A has
access to oracles O := {Execute,SendInit,SendResp,SendTermInit,Reveal,
Corrupt,Test,G,H}. Oracles Execute, Reveal, Test and G are defined as in
Figure 24. Oracles SendTermInit and SendTermResp are defined in Figure 35.
Lines written in blue show how B3 simulates the game.

In SendResp, we check if this is the τ∗-th query and the commitment sent by A
was output by G before, then B3 looks in the list TG to find the corresponding input
xS and outputs xS as commitment yP to receive the IPw-GA-StCDH challenge xP and
pwUS. Queries to SendTermInit are simulated similarly. B2 computes xS and if this
is the τ∗-th query, it outputs xU as commitment yP to receive xP and pwUS. Instances
that are not fresh will be simulated with the decision oracles.
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SendTermInit(S, t,U, xU)
00 cnt := cnt + 1
01 if πtS 6= (⊥, (U, S,⊥,⊥, com),⊥,⊥)
02 return ⊥
03 (s1, ..., s`) $← G`
04 xS := (xS

1, ..., x
S
`) := (s1 ? x̃, ..., s` ? x̃)

05 if cnt = τ∗

06 Output yP := xU to receive challenge xP, pwUS
07 � From now on B3 also has access to

GA-DDHx0 (xP
i , ·, ·),GA-DDHx1 (xP

i , ·, ·) ∀i ∈ [`]
08 xS := xP

09 (s1, ..., s`) := ⊥
10 tr∗ = (U, S, xU, xS, com)
11 if TG[xS] 6= ⊥
12 return ⊥
13 Replace � in TG[�] := com with xS

14 if ∃P ∈ U ∪ S, t′ s. t. πt
′

P .tr = (U, S, xU, xS, com)
15 return ⊥
16 if (U,S) /∈ C
17 πtS.fr := true
18 K $← K
19 Ts[U,S, xU, xS, com] := (S, (s1, ..., s`),K)
20 else
21 πtS.fr := false
22 (b1, ..., b`) := pwUS
23 if (U, S, xU, xS, com) = tr∗

and ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH
and GA-DDHxbi

(xP
i , x

U
i , zi) = 1 ∀i ∈ [`]

24 K := TH[U, S, xU, xS, com, pwUS, z]
25 else if ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH

and GA-DDHxbi
(x̃, xU

i , s
−1
i ? zi) = 1 ∀i ∈ [`]

26 K := TH[U, S, xU, xS, com, pwUS, z]
27 else
28 K $← K
29 TH[U, S, xU, xS, com, pwUS, (s1, ..., s`)] := K
30 πtS := ((s1, ..., s`), (U, S, xU, xS, com),K, true)
31 return (S, xS)

SendTermResp(U, t, S, xS)
32 cnt := cnt + 1
33 if πtU 6= ((u1, ..., u`), (U, S, xU,⊥, com),⊥,⊥)
34 return ⊥
35 if G(xS) 6= com
36 πtU := ((u1, ..., u`), (U, S, xU, xS, com),⊥, false)
37 return ⊥
38 if ∃P ∈ U , t′ s. t. πt

′
P .tr = (U, S, xU, xS, com)

39 return ⊥
40 if πtU.tr = tr∗
41 tr∗ := (U,S, xU, xS, com)
42 if ∃t′ s. t. πt

′
S .tr = (U, S, xU, xS, com)

and πt
′

S .fr = true
43 πtU.fr := true
44 (S, (s1, ..., s`),K) := Ts[U, S, xU, xS, com]
45 else if (U,S) /∈ C
46 πtU.fr := true
47 K $← K
48 Ts[U, S, xU, xS, com] := (U, (u1, ..., u`),K)
49 else
50 πtU.fr := false
51 (b1, ..., b`) := pwUS
52 if (U,S, xU, xS, com) = tr∗

and ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH
and GA-DDHxbi

(xP
i , x

S
i , zi) = 1 ∀i ∈ [`]

53 K := TH[U, S, xU, xS, com, pwUS, z]
54 else if ∃z s. t. (U, S, xU, xS, com, pwUS, z) ∈ TH

and GA-DDHxbi
(x̃, xS

i , u
−1
i ? zi) = 1 ∀i ∈ [`]

55 K := TH[U, S, xU, xS, com, pwUS, z]
56 else
57 K $← K
58 TH[U, S, xU, xS, com, pwUS, (u1, ..., u`)] := K
59 πtU := ((u1, ..., u`), (U,S, xU, xS, com),K, true)
60 return true

Figure 35: Oracles SendTermInit and SendTermResp for adversary B3 in Figure 34.

Finally, we look at random oracle queries for all fresh instances contained in Ts. B3
checks if the provided z is valid using the decision oracles. Then it checks for event
badpfs, i.e., if the password was corrupted and it matches the one in the query. If
the query now additionally contains the target trace, we can solve the IPw-GA-StCDH
problem. If the trace is not the target trace, B3 aborts. This concludes the analysis of
badpfs and applying Lemma 7 yields the bound in Theorem 10.
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